Answer:
The number of distinct arrangements is <em>12600</em><em>.</em>
Step-by-step explanation:
This is a permutation type of question and therefore the number of distinguishable permutations is:
n!/(n₁! n₂! n₃! ... nₓ!)
where
- n₁, n₂, n₃ ... is the number of arrangements for each object
- n is the number of objects
- nₓ is the number of arrangements for the last object
In this case
- n₁ is the identical copies of Hamlet
- n₂ is the identical copies of Macbeth
- n₃ is the identical copies of Romeo and Juliet
- nₓ = n₄ is the one copy of Midsummer's Night Dream
Therefore,
<em>Number of distinct arrangements = 10!/(4! × 3! × 2! × 1!)</em>
<em> = </em><em>12600 ways</em>
<em />
Thus, the number of distinct arrangements is <em>12600</em><em>.</em>
Answer:Solve equations by clearing the Denominators Find the least common denominator of all the fractions in the equation. Multiply both sides of the equation by that LCD. This clears the fractions.
Step-by-step explanation:Solve equations by clearing the Denominators Find the least common denominator of all the fractions in the equation. Multiply both sides of the equation by that LCD. This clears the fractions.
She buys 24 dvds in 12 weeks.
Answer:

Step-by-step explanation:
Consider the revenue function given by
. We want to find the values of each of the variables such that the gradient( i.e the first partial derivatives of the function) is 0. Then, we have the following (the explicit calculations of both derivatives are omitted).


From the first equation, we get,
.If we replace that in the second equation, we get

From where we get that
. If we replace that in the first equation, we get

So, the critical point is
. We must check that it is a maximum. To do so, we will use the Hessian criteria. To do so, we must calculate the second derivatives and the crossed derivatives and check if the criteria is fulfilled in order for it to be a maximum. We get that


We have the following matrix,
.
Recall that the Hessian criteria says that, for the point to be a maximum, the determinant of the whole matrix should be positive and the element of the matrix that is in the upper left corner should be negative. Note that the determinant of the matrix is
and that -10<0. Hence, the criteria is fulfilled and the critical point is a maximum