Answer:
Step-by-step explanation:
a.
first number is 1000-1+9=1008
9)1000(1
9
-------
10
9
-----
10
9
----
1
----
last number is 9999
9| 9999
---------
1111 |0
--------
9999=1008+(n-1)9
9999-1008=(n-1)9
n-1=8991/9=999
n=999+1=1000
b.
first digit=1000
last digit=9999-1=9998
2 |9999
---------
|4999|1
9998=1000+(n-1)2
(n-1)2=9998-1000=8998
n-1=4499
n=4499=1=5000
c.not sure
d.
total numbers=9000
9999=1000+(n-1)1
9999-1000=n-1
n=8999+1=9000
numbers divisible by 3=3000
first number=1002
last number=9999
9999=1002+(n-1)3
(n-1)3=9999-1002=8997
n-1=2999
n=2999+1=3000
numbers not divisible by 3=9000-3000=6000
e.
numbers divisible by 5=1800
first number=1000
last number=9995
9995=1000+(n-1)5
(n-1)5=9995-1000=8995
n-1=1799
n=1799+1=1800
numbers divisible by 7=1286
7 | 1000
---------
| 142-6
1000-6+7=1001
7 | 9999
|---------
1428-3
9999-3=9996
first digit=1001
last digit=9996
9996=1001+(n-1)7
(n-1)7=9996-1001=8995
n-1=1285
n=1285+1=1286
numbers divisible by 35=257
first digit=1015
35 ) 1000 ( 28
70
----
300
280
------
20
---
1000-20+35=1015
35)9999(285
70
----
299
280
-----
199
175
----
24
----
last digit=9999-24=9975
9975=1015+(n-1)35
(n-1)35=9975-1015=8960
n-1=8960/35=256
n=257
reqd. numbers=1800+1286-257=3019
0.6 cup of gliter is used for 1 cup of glue and 1.6 cup of gliter glue is made with 1 cup of glue.
Part A
Given that,
15 cup of gliter is for 25 cup of glue ,
Therefore, "X" cup of gliter is for 1 cup of glue
X = (1*15)/25
X= 0.6 cup of gliter
Part B,
Given that,
From part A 0.6 cup of gliter is for 1 cup of glue
Thus, 1 cup of glue and 0.6 cup of gliter when mixed will form "Y" cup of gliter glue
Now, Y= 0.6 cup of gliter + 1 cup of glue
Y= 1.6 cup of gliter glue
which approximates to 2 cup of gliter glue.
For more information on cross multiplication kindly visit to
brainly.com/question/11203238
September 5, 1793 - July 27, 1794
Given:
The given arithmetic sequence is:

To find:
The recursive formula of the given arithmetic sequence.
Solution:
We have,

Here, the first term is -3. So,
.
The common difference is:



The recursive formula of an arithmetic sequence is:

Where, d is the common difference.
Putting
, we get

Therefore, the recursive formula of the given arithmetic sequence is
, where
.