Answer:
B) y = 9 x has Proportionality Constant = 9
Step-by-step explanation:
Two quantities P and Q are said to be PROPORTIONAL if and only if:
P ∝ Q ⇔ P = k Q ⇔ ![k = \frac{P}{Q}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7BP%7D%7BQ%7D)
Here, k = PROPORTIONALITY CONSTANT
Given : k = 9
Now, let us consider the given expressions in which x ∝y
y = 81/3 x
Here, ![\frac{y}{x} = \frac{81}{3} = 27 \ne 9](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D%20%3D%20%5Cfrac%7B81%7D%7B3%7D%20%20%3D%2027%20%5Cne%209)
So, here Proportionality Constant ≠ 9
y = 9 x
Here, ![\frac{y}{x} = 9](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D%20%3D%20%209)
So, here Proportionality Constant = 9
y = 3 x
Here, ![\frac{y}{x} = 3 \ne 9](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D%20%3D%20%203%20%5Cne%209)
So, here Proportionality Constant ≠ 9
y = 1/9 x
Here, ![\frac{y}{x} = \frac{1}{9} \ne 9](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bx%7D%20%3D%20%20%5Cfrac%7B1%7D%7B9%7D%20%20%5Cne%209)
So, here Proportionality Constant ≠ 9
Hence, only y = 9 x has Proportionality Constant = 9