Answer:
The value of BK is 3m and the value of CK is 2.4m.
Step-by-step explanation:
Given information: ABCD trapezoid
, BC=1.2m, AD=1.8m
, AB=1.5m, CD=1.2m
, AB∩CD=K.
Using the given information draw a figure.
Two sides of a trapezoid are parallel.
Since AB∩CD=K, therefore AB and CD are not parallel, because parallel line never intersect.
AD\parallelBC
\angle KBC=\angle KAD (Corresponding angles)
\angle KCB=\angle KDA (Corresponding angles)
By AA rule of similarity
\triangle KBC\sim \triangle KAD
Corresponding sides of similar triangles are proportional.
\frac{KB}{KA}=\frac{KC}{KD}=\frac{BC}{AD}
\frac{x}{x+1.5}=\frac{y}{y+1.2}=\frac{1.2}{1.8}
\frac{x}{x+1.5}=\frac{1.2}{1.8}
\frac{x}{x+1.5}=\frac{2}{3}
3x=2x+3
x=3
The length of BK is 3 m.
\frac{y}{y+1.2}=\frac{1.2}{1.8}
\frac{y}{y+1.2}=\frac{2}{3}
3y=2y+2.4
y=2.4
The length of CK is 2.4 m.