Answer:
yes
Step-by-step explanation:
1+3=4
4+3=7
7+3=10
and 10+3=13
(a) Take the Laplace transform of both sides:


where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://tex.z-dn.net/?f=L%5Bty%27%28t%29%5D%3D-%28L%5By%27%28t%29%5D%29%27%3D-%28sY%28s%29-y%280%29%29%27%3D-Y%28s%29-sY%27%28s%29)
This yields the linear ODE,

Divides both sides by
:

Find the integrating factor:

Multiply both sides of the ODE by
:

The left side condenses into the derivative of a product:

Integrate both sides and solve for
:


(b) Taking the inverse transform of both sides gives
![y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right]](https://tex.z-dn.net/?f=y%28t%29%3D%5Cdfrac%7B7t%5E2%7D2%2BC%5C%2CL%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7Be%5E%7Bs%5E2%7D%7D%7Bs%5E3%7D%5Cright%5D)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.

Substitute these into the ODE to see everything checks out:

Answer:
350
Step-by-step explanation:
7 x 10 to the 7th power is 70000000 and 2x 10 to the 5th power is 200000, if you divide them yo get 350.
Answer:
The Southern Ocean, also known as the Antarctic Ocean or the Austral Ocean, comprises the southernmost waters of the World Ocean, generally taken to be south of 60° S latitude and encircling Antarctica. As such, it is regarded as the second-smallest of the five principal oceanic divisions: smaller than the Pacific, Atlantic, and Indian Oceans but larger than the Arctic Ocean. This oceanic zone is where cold, northward flowing waters from the Antarctic mix with warmer subantarctic waters.
Step-by-step explanation:
Answer:
120 x 10^-4
Step-by-step explanation:Multiplying 1.2 by 10^2 and multiplying 10^-2 by 10^-2.Gives 120 x 10^-4 So, the mass of an average grain of rock salt is 120 x 10^-4 .