Answer:
80ml
Explanation:
you have your initial concentration to be 0.25 mole on your final volume to be 250 ml and your final concentration to be 0.8 0.08 molar you don't have your initial volume sotify your initial volume you use the expression see 1 * 21 equals see two times between you make when when the subject then 1 equals to 2 x 2/3 one you know substitute your values into it to get being one that's your original volume to be at the latest or 80 ml
Taking into account the reaction stoichiometry, 109.09 grams of Ag₂S₂O₃ are formed when 125 g AgBr reacts completely.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
2 AgBr + Na₂S₂O₃ → Ag₂S₂O₃ + 2 NaBr
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- AgBr: 2 moles
- Na₂S₂O₃: 1 mole
- Ag₂S₂O₃: 1 mole
- NaBr: 2 moles
The molar mass of the compounds is:
- AgBr: 187.77 g/mole
- Na₂S₂O₃: 158 g/mole
- Ag₂S₂O₃: 327.74 g/mole
- NaBr: 102.9 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- AgBr: 2 moles ×187.77 g/mole= 375.54 grams
- Na₂S₂O₃: 1 mole ×158 g/mole= 158 grams
- Ag₂S₂O₃: 1 mole ×327.74 g/mole= 327.74 grams
- NaBr: 2 moles ×102.9 g/mole= 205.8 grams
<h3>Mass of Ag₂S₂O₃ formed</h3>
The following rule of three can be applied: if by reaction stoichiometry 375.54 grams of AgBr form 327.74 grams of Ag₂S₂O₃, 125 grams of AgBr form how much mass of Ag₂S₂O₃?

<u><em>mass of Ag₂S₂O₃= 109.09 grams</em></u>
Then, 109.09 grams of Ag₂S₂O₃ are formed when 125 g AgBr reacts completely.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1
Answer:
1.125
Explanation:
I think it is his because if you add 0.30 and 0.15 it adds up to 0.45 so you just multiply 0.45 and 2.5 and then it gives you 1.125. HOPE IT HELPS.
Answer:
D
Explanation:
According to the law of conservation of mass, matter can neither be created nor destroyed. The implication of this is that the total mass of reactants should be equal to the total mass of products.
There should be equal masses of reactants and products on both sides of the reaction equation. This most important condition is only satisfied by option D.
Yes; you need to know how long the light bulb is on.
<h3>How much electricity does a light bulb use?</h3>
Because of this, lower wattage bulbs are sometimes referred to as "equivalent to 60W"; nevertheless, what is equal is brightness, not energy consumption.
Converting wattage to kilowatts is the best way to determine how much energy your lightbulb consumes. Thus, 0.1 kW would be needed per hour for a 100W light bulb.
Incandescent (up to 100W) and halogen (up to 120W) light bulbs with higher energy consumption are being phased out. You may get ornamental exposed carbon filament light bulbs, which are normally 40–60W, if you still have any of them operating in your house.
To learn more about electricity from given link
brainly.com/question/776932
#SPJ4