Answer:
Industries cause enormous water pollution: By directly discharging their untreated effluents into water bodies like rivers and lakes. By letting their polluting effluents flow onto land so that they get absorbed into the soil and pollute underground water.
Since each glucose molecule produces two acetyl-CoA molecules, the Krebs cycle must be completed twice to produce the four CO2, six NADH, two FADH2, and two ATPs.
- Catabolic reactions occur within cells during cellular respiration. It is a biochemical process by which waste materials are removed and nutrients are broken down to generate energy, which is then stored in the form of ATP. The process of aerobic respiration needs oxygen.
- The Krebs cycle, also known as the citric acid cycle, is the last step of oxidation for amino acids, lipids, and glucose.
- Other than glucose, many animals rely on other substances for energy.
- Protein's metabolic byproduct, amino acids, are deaminated and converted to pyruvate and other Krebs cycle intermediates.
- They begin the cycle and are broken down, for example. On deamination, alanine turns into pyruvate, glutamate into -ketoglutarate, and aspartate into oxaloacetate.
- Acetyl CoA is created when fatty acids are -oxidized and enters the Krebs cycle. It is the primary mechanism through which cells produce ATP. Complete nutrient oxidation results in the production of a significant amount of energy.
To know more about glucose check the below link:
brainly.com/question/13539511
#SPJ4
Answer:
Algae and sunlight
Explanation:
Algae provides nutrients to planktons enhancing their growth. The planktons are photosynthetic in nature. Energy from the sunlight is used by planktons during photosynthesis to make their own food thus increasing its population.
Answer: The receptor site is the location that a drug binds to, altering the function of a biomolecule.
Explanation:
The drug receptors site, are the sites where the sites where the drug molecules bind. Basically, a low number of receptors exists and the extent to which the molecules occupy their sites differ with the concentration of drug. The receptor site changes the conformation and function of the binding molecule of the drug.