Answer:
<em>It will take 9 years for the population to double</em>
Step-by-step explanation:
<u>Exponential Growth
</u>
The natural growth of some magnitudes can be modeled by the equation:

Where P is the actual amount of the magnitude, Po is its initial amount, r is the growth rate and t is the time.
The population of a city grows at a rate of r=8% = 0.08 per year. We are required to find when (t) the population will double, or P=2Po.
Substituting in the equation:

Simplifying:

Taking logarithms:

Applying the exponent property of logs:

Solving for t:

Calculating:

It will take 9 years for the population to double
Answer:
6.17
Step-by-step explanation:


- <u>We </u><u>have </u><u>given </u><u>that </u><u>the </u><u>coordinates </u><u>of </u><u>the </u><u>end </u><u>point </u><u>G </u><u>and </u><u>H </u><u>are </u><u>(</u><u> </u><u>-</u><u>6</u><u>,</u><u>5</u><u>)</u><u> </u><u>and </u><u>(</u><u> </u><u>2</u><u>,</u><u> </u><u>-</u><u>7</u><u> </u><u>)</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>length </u><u>of </u><u>GH </u>

The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
<u>According </u><u>to </u><u>the </u><u>distance </u><u>formula</u><u>, </u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

- <u>Here</u><u>, </u><u> </u><u>x1</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>,</u><u> </u><u>x2</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>and </u><u>y1</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>y2</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u>
<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u>








Answer:
0.80A + 0.92B = 63 .....1
A + B = 75 ......2
Step-by-step explanation:
Let A and B represent the total possible score in part A and B respectively;
Analysing each sentence of the question;
Sam scored 80% on Part A of a math test and 92% on part B of the math test. His total mark on the test was 63
80% of A + 92% of B = 63
0.80A + 0.92B = 63 ......1
The total possible marks for the test was 75;
A + B = 75 .....2
So, equation 1 and 2 provides a set of simultaneous equations that can be used to represent and solve the situation.
Solving the simultaneous equations, we will arrive at;
Part A = 50
Part B = 25
Answer:
99.9
Step-by-step explanation: