Answer:
the mass of the raft is 68.4 kg
Explanation:
Since Mass is defined as Volume times Density, start by calculating the volume of the raft:
Volume = length x width x high = 1.5 m x 1.0 m x 0.12 m = 0.18 m^3
and now multiply it times the given density in order to find its mass:
Mass = Volume x Density = 0.18 m^3 x 380 kg/m^3 = 68.4 kg.
Notice that the m^3 units cancel out (they are in numerator and in denominator) leaving just the kg (a unit of mass) in the answer.
Therefore, the mass of the raft is 68.4 kg
Answer:
The acceleration of gravity on the Moon is only one-sixth of that on Earth. If we hit a baseball on the moon with the same effort(and at the speed and angle)that we would on earth, the ball would land 6 times as far. The ball on the moon will cover 6 times more distance than Earth.
Explanation:
Speed=distance travelled/Time required speed
Speed=d/t
Acceleration of gravity on earth=9.8 m/s^2
Acceleration of gravity on Moon=1.62 m/s^2
So the maximum height of ball will be the ration of these both gravity.
Number 4 I think
the atomic mass is 11 because the mass is the sum of protons and neutrons
<span>All of these are directly proportional to each other, meaning that if one goes up or down, they all do the same.
So if the temperature increases so does the heat. If the heat increases then so does the thermal energy. If the temperature goes up then so does the thermal energy. ETC...</span>
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>