Answer:
The time constant is 
Explanation:
From the question we are told that
the time take to charge is 
The mathematically representation for voltage potential of a capacitor at different time is

Where
is the time constant
is the potential of the capacitor when it is full
So the capacitor potential will be 100% when it is full thus
100% = 1
and from the question we are told that the at the given time the potential of the capacitor is 85% = 0.85 of its final potential so
V = 0.85
Hence



Answer:
The temperature is 
Explanation:
From the question ewe are told that
The rate of heat transferred is 
The surface area is 
The emissivity of its surface is 
Generally, the rate of heat transfer is mathematically represented as

=> ![T = \sqrt[4]{\frac{P}{e* \sigma } }](https://tex.z-dn.net/?f=T%20%20%3D%20%20%5Csqrt%5B4%5D%7B%5Cfrac%7BP%7D%7Be%2A%20%5Csigma%20%7D%20%7D)
where
is the Boltzmann constant with value 
substituting value
![T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }](https://tex.z-dn.net/?f=T%20%20%3D%20%20%5Csqrt%5B4%5D%7B%5Cfrac%7B13.1%7D%7B%200.287%2A%205.67%20%2A10%5E%7B-8%7D%20%7D%20%7D)

Answer:
an ellipse with the Sun at one focus or D
Explanation:
Answer for edgenuity
Answer:
The inverse of f equals the inverse of d Subscript o Baseline plus the inverse of d Subscript I Baseline.
Explanation:
The lens equation shows the relation among focal length of the lens, image distance and object distance. It can be expressed as:
=
+ 
where: f is the focal length of the lens,
is the object distance to the lens and
is the image distance to the lens.
The lens equation can be used to determine the unknown value among the variables f ,
and
.
The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

Generally, the equation for Rate of flow of Liquid is mathematically given as

$$
Where dP is pressure difference r is the radius
is the viscosity of water
L is the length of the pipe


In $30s the quantity that flows out of the tube

In conclusion, the quantity that flows out of the tube

Read more about the flows rate
brainly.com/question/27880305
#SPJ1