You can make 11 batches of brownies. Divide 8.5 (8 1/2) by .75(3/4)
domain represents the x values so for example in a diagonal line that continues infinitely, the domain is all real numbers or (-infinity, infinity)
range represents y values so it would also be all real numbers or (-infinity, infinity)
let’s say there is a line (refer to pic) that moves ONLY from point (-3, -1) and (2, 2)
the domain would be [-3, 2]
we use brackets because it’s a real number unlike infinity (also because it’s a closed circle on the graph; if the graph had an open circle you would use a parenthesis)
and the range would be [-1, 2]
if you have any more questions about this explanation feel free to ask!
Draw a box plot for the following data. {35, 50, 50, 48, 48, 32, 38, 41, 48, 34, 29, 23, 41, 34, 43}
loris [4]
I can't really draw one, but the points would be, 23,34,41,48,50
Answer:
18.28 m
Step-by-step explanation:
Given the flower garden in the question :
The shape is composite and can be divided into 2 semicirles and rectangle
The perimeter of a semicircle is the Circumference of the semicircle = πr
Hence, 2 semicirles = 2πr
Radius of semicircle = 2/2 = 1
Perimeter = 2 * 3.14 * 1² = 2 * 3.14 * 1 = 6.28 m
The perimeter of rectangle; length and width are 6m and 2 m respectively :
Perimeter of rectangle = 2(l + w) = 2(4+2) = 2(6) = 12m
Tve perimeter of garden = 6.28 + 12 = 18.28 m
Answer:



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false
Step-by-step explanation:
Considering the graph
Given the vertices of the segment AB
Finding the length of AB using the formula







units
Given the vertices of the segment JK
From the graph, it is clear that the length of JK = 5 units
so
units
Given the vertices of the segment GH
Finding the length of GH using the formula





![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
units
Thus, from the calculations, it is clear that:
Thus,



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false