Answer:
V₀ₓ = 10.94 m/s
V₀y = 18.87 m/s
Explanation:
To find the launch velocity, we use 1st equation of motion.
Vf = Vi + at
where,
Vf = Final Velocity of Ball = Launch Speed = V₀ = ?
Vi = Initial Velocity = 0 m/s (Since ball was initially at rest)
a = acceleration = 376 m/s²
t = time = 0.058 s
Therefore,
V₀ = 0 m/s + (376 m/s²)(0.058 s)
V₀ = 21.81 m/s
Now, for x-component:
V₀ₓ = V₀ Cos θ
where,
V₀ₓ = x-component of launch velocity = ?
θ = Angle with horizontal = 59.9⁰
V₀ₓ = (21.81 m/s)(Cos 59.9°)
<u>V₀ₓ = 10.94 m/s</u>
<u></u>
for y-component:
V₀ₓ = V₀ Sin θ
where,
V₀y = y-component of launch velocity = ?
θ = Angle with horizontal = 59.9⁰
V₀y = (21.81 m/s)(Sin 59.9°)
<u>V₀y = 18.87 m/s</u>
<u></u>
Answer:
The image behind the mirror is called a virtual image because it cannot be projected onto a screen—the rays only appear to originate from a common point behind the mirror. If you walk behind the mirror, you cannot see the image, because the rays do not go there
The particles always move parallel and perpendicular to the waves. The waves which are in the water moves a circle. Both up and down and back and forth.
Good luck :)
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>