Answer:
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.
Explanation:
Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.
In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.
Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.
The answer is n= 6.
What is Balmer series?
The Balmer series is the portion of the emission spectrum of hydrogen that represents electron transitions from energy levels n > 2 to n = 2. These are four lines in the visible spectrum. They are also known as the Balmer lines. The four visible Balmer lines of hydrogen appear at 410 nm, 434 nm, 486 nm and 656 nm.
For the Balmer series, the final energy level is always n=2. So, the wavelengths 653.6, 486.1, 434.0, and 410.2 nm correspond to n=3, n=4, n=5, and n=6 respectively. Since the last wavelength, 410.2 nm, corresponds to n=6, the next wavelength should logically correspond to n=7.
To solve for the wavelength, calculate the individual energies, E2 and E7, using E=-hR/(n^2). Then, calculate the energy difference between E2 (which is the final) and E7 (which is the initial). Finally, use lamba=hc/E to get the wavelength.
To learn more about emission spectrum click on the link below:
brainly.com/question/24213957
#SPJ4
Answer:
0.0025H
Explanation:
I didn't come here to be part of this all I wanted is just information for my research
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.