1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
13

Use the discriminant to determine what type of roots the equations will have, and categorize the equations according to their ro

ots.
two distinct roots, One repeated root, two complex roots



x^2 − 4x + 2 = 0

5x^2 − 2x + 3 = 0

2x^2 + x − 6 = 0

13x^2 − 4 = 0

x^2 − 6x + 9 = 0

x^2 − 8x + 16 = 0

4x^2 + 11 = 0
Mathematics
2 answers:
lilavasa [31]3 years ago
8 0

Answer:

For the equation x2 − 4x + 2 = 0, the discriminant is (-4)2 − 4(1)(2) = 8. Since the discriminant is positive, it has two distinct real roots.

For the equation 5x2 − 2x + 3 = 0, the discriminant is (-2)2 − 4(5)(3) = -56. Since the discriminant is negative, it has two complex roots.

For the equation 2x2 + x − 6 = 0, the discriminant is (1)2 − 4(2)(-6) = 49. Since the discriminant is positive, it has two distinct real roots.

For the equation 13x2 − 4 = 0, the discriminant is (0)2 − 4(13)(-4) = 208. Since the discriminant is positive, it has two distinct real roots.

For the equation x2 − 6x + 9 = 0, the discriminant is (-6)2 − 4(1)(9) = 0. Since the discriminant is zero, it has one repeated root.

For the equation x2 − 8x + 16 = 0, the discriminant is (-8)2 − 4(1)(16) = 0. Since the discriminant is zero, it has one repeated root.

For the equation 4x2 + 11 = 0, the discriminant is (0)2 − 4(4)(11) = -176. Since the discriminant is negative, it has two complex roots.

topjm [15]3 years ago
6 0

Step-by-step explanation:

The discriminant of the quadratic equation ax^2+bx+c=0:

\Delta=b^2-4ac

If Δ < 0, then the equation has two complex roots x=\dfrac{-b\pm\sqrt\Delta}{2a}

If Δ = 0, then the equation has one repeated root x=\dfrac{-b}{2a}[/tex If Δ > 0, then the equation has two discint roots [tex]x=\dfrac{-b\pm\sqrt\Delta}{2a}

1.\ x^2-4x+2=0\\\\a=1,\ b=-4,\ c=2\\\\\Delta=(-4)^2-4(1)(2)=16-8=8>0,\ \bold{two\ distinct\ roots}\\\sqrt\Delta=\sqrt8=\sqrt{4\cdot2}=2\sqrt2\\\\x=\dfrac{-(-4)\pm2\sqrt2}{2(1)}=\dfrac{4\pm2\sqrt2}{2}=2\pm\sqrt2\\\\==============================\\\\2.\ 5x^2-2x+3=0\\\\a=5,\ b=-2,\ c=3\\\\\Delta=(-2)^2-4(5)(3)=4-60=-56

3.\ 2x^2+x-6=0\\\\a=2,\ b=1,\ c=-6\\\\\Delta=1^2-4(2)(-6)=1+48=49>0,\ \bold{two\ distinct\ roots}\\\sqrt\Delta=\sqrt{49}=7\\\\x=\dfrac{-1\pm7}{(2)(2)}\\\\x_1=\dfrac{-8}{4}=-2,\ x_2=\dfrac{6}{4}=\dfrac{3}{2}\\\\==============================\\\\4.\ 13x^2-4=0\qquad\text{add 4 to both sides}\\\\13x^2=4\qquad\text{divide both sides by 13}\\\\x^2=\dfrac{4}{13}\to x=\pm\sqrt{\dfrac{4}{13}},\ \bold{two\ distinct\ roots}\\\\==============================

5.\ x^2-6x+16=0\\\\a=1,\ b=-6,\ c=16\\\\\Delta=(-6)^2-4(1)(16)=36-64=-28

7.\ 4x^2+11=0\qquad\text{subtract 11 from both sides}\\\\4x^2=-11\qquad\text{divide both sides by 4}\\\\x^2=-\dfrac{11}{4}\to x=\pm\sqrt{-\dfrac{11}{4}}\\\\x=\pm\dfrac{\sqrt{11}}{2}\ i,\ \bold{two\ complex\ roots}

You might be interested in
Help meh emergency. No links please give a right answer, need helppppp
andre [41]

Answer:

70.91 x 10 = 709.1

70.91 x 100 = 7,091

70.91 x 1000 = 70,910

8 0
3 years ago
Read 2 more answers
K(a)= 4a-4, Find k(-9)
FromTheMoon [43]

We simply replace a with -9

k(-9) = 4 * -9 - 4

k(-9) = -40

:)

5 0
3 years ago
Match the inequality to the number line that represents its solution
pav-90 [236]
Tile 1 goes to graph D
Tile 2 goes to graph B
Tile 3 goes to graph A
Tile 4 goes to graph C

Desmos graphing calculator at desmos.com/calculator is a great tool.
8 0
3 years ago
Read 2 more answers
What is the surface area?
mash [69]

\large\bf{\underline{Answer:}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{ = 3000 \:ft^2}

__________________________________________

\large\bf{\underline{Given:}}

  • A 3 dimensional figure with 5 sides
  • it has 3 rectangles with dimensions 28 ft and 25 ft
  • And 2 triangles with base =30 ft and height = 20 ft

\large\bf{\underline{To\: find:}}

  • Total surface area of figure

\large\bf{\underline{Therefore:}}

\bf{area \:of\: figure}

‎ㅤ{\bf = area \:of \:3\: rectangles + 2 \: triangles}

\large\bf{\underline{Formulas:}}

\boxed{\bf\pink{area\:of\: triangle= \frac{1}{2}\times base\times height}}

\boxed{\bf\pink{area\:of\: rectangle=length\times breadth}}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{= 3\times (28 \times 25 )+ 2(\frac{1}{2} \times 30 \times 20)}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{= 3 \times 800 + 2 \times 300}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{=2400+ 600}

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\large\bf{= 3000}

__________________________________________

\large\bf{\underline{Hence,}}

❒ Area of given figure

‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎‎‎ ‎ ‎\huge\mathfrak{= 3000\: ft^2}

5 0
3 years ago
Kendrick and Perla spend a total of $92 at an amusement park. They spend $15 on parking, $13 at lunch, and the rest on two admis
Travka [436]

Answer:

32$ Each

Step-by-step explanation:

15+13=28

92-28= 64

64/2 = 32$

4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the distance between A(-12,13) and B(-2,-11).
    13·1 answer
  • It cost Zachary $7.00 to send 140 text messages. How many text messages did he send if he spent $0.85?
    7·2 answers
  • Please help fast answer the question in the picture
    8·1 answer
  • Valerie used the time-to-pay-off formula to calculate how many payments it
    9·1 answer
  • A circular garden has a circumference of 113 yards. Lars is digging a straight line along a diameter of the garden at a rate of
    14·1 answer
  • Write an equation that passes through (-2,8) and(-4,-4)
    10·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7B-23%7D%7B30%7D%20%2B%20%5Cfrac%7B5%7D%7B48%7D" id="TexFormula1" title="\frac{-23}{30
    11·1 answer
  • 1 2/3 as a decimal. Quick pls
    6·1 answer
  • What is the following product
    14·1 answer
  • What is the value of x in the following equation?<br><br> 5x−13=15+7x
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!