Answer:
4 im pretty sur
Step-by-step explanation:
The sample space will be: {1, 2, 3, 4, 5, 6}
Event A is: {Rolling 1,2 or 3}
Complement of event A will contain all those outcomes in the sample space which are not a part of event A.
So, complement of event A will be: {Rolling a 4,5 or 6}
Thus option A gives the correct answer
Answer:
μ = 1 The firm expects that one oil exploration will be successful.
v(x)= 0.9
Step-by-step explanation:
The first step is to define the random variable x as:
x: number of oil explorations being succesful
Then x can be take this values:
x = 0 , x =1 ... x =10
x is a binomially distributed random variable with parameters.
p = 0.1 and n=10
And the mean or the expected value of x is:
μ = E(x) = np
Then μ = 10*0.1 = 1
And the variance of x is:
V(x) = np(1-p)
V(x) = 10(0.1)(1-0.1)= 0.9
Answer:
1.) 471.24
2.) 1231.5
3.) 113.1
Step-by-step explanation: A = pi x r^2 + pi x r x ^2
1.) a = 3.14 x (5)^2 + 3.14 x 5 x ^2
a = 3.14 x 25 + 3.14 x 5 x 25
a = 78.54 + 392.70
a ≈ 471.24
2.) A = 3.14 (7)^2 + 3.14 x (7) x ^2
a = 3.14 x 49 + 3.14 x 7 x 49
a = 153.93 + 1077.57
a ≈ 1231.5
3.) a = 3.14 (3)^2 + 3.14 x 3 x ^2
a = 3.14 x 9 + 3.14 x 3 x 9
a = 28.27 + 84.82
a ≈ 113.1
see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>