Greetings, I Am BrotherEye
Answer:
AP = CP, BP = DP; sample answer: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram, so if AP = CP and BP = DP, then the string forms a parallelogram. ALGEBRA Find x and y so that the quadrilateral is a parallelogram. BP = DP, then the string forms a parallelogram.
Step-by-step explanation:
Answer: B
75% you add them together then devide by 2
The equation formula of the circle is (x-h)^2 + (y-k)^2 = r^2
where (h,k) the point of the center of the circle
and (r) is the radius of the circle
so if the center of the circle = (-2,-4)
by subs. in the formula we get (x-(-2))^2 + (y-(-4))^2 = r^2
then the equation will be (x+2)^2 + (y+4)^2 = r^2
now we want to define the radius of the circle r
since point (3,8) lay on the circle so we can
then subs. in the equation to get the radius
(x+2)^2 +(y+4)^2 = r^2
(3+2)^2 +(8+4)^2 = r^2
25 + 144 = r^2
r^2 = 169
r= 13
the radius of the circle is 13
so by subs in the equation we get
(x+2)^2 + (y+4)^2 = 169
so it is the first answer in the choices
Original position:
A-(-8,-4)
B-(-6,3)
C-(-3,7)
D-(-2,-2)
Translation:
A'-(-4,-4)
B'-(-2,3)
C'-(1,7)
D'-(2,-2)
Vertex C will be in quadrant 1 (+,+) after being translated 4 unites to the right.