Answer:
0 ≤ t ≤ 5.
Step-by-step explanation:
In the function
,
is the independent variable. The domain of
is the set of all values of
that this function can accept.
In this case,
is defined in a real-life context. Hence, consider the real-life constraints on the two variables. Both time and volume should be non-negative. In other words,
.
.
The first condition is an inequality about
, which is indeed the independent variable.
However, the second condition is about
, the dependent variable of this function. It has to be rewritten as a condition about
.
.
Hence, t ≤ 5.
Combine the two inequalities to obtain the domain:
0 ≤ t ≤ 5.
Answer:
3448.5
Step-by-step explanation:
I=PRT
I=22990×0.05×3
=$3448.5
55 adult tickets. Set up 2 equations: c+a=125 and 6.1c+9.4a=944. Isolate either variable from first equation and plug into second to find that 55 adult tickets were sold and 70 children’s tickets
Answer:
Pretty sure it's (4, -5)
Step-by-step explanation:
If not, shoot me I guess.
A) There are a number of ways to compute the determinant of a 3x3 matrix. Since k is on the bottom row, it is convenient to compute the cofactors of the numbers on the bottom row. Then the determinant is ...
1×(2×-1 -3×1) -k×(3×-1 -2×1) +2×(3×3 -2×2) = 5 -5k
bi) Π₁ can be written using r = (x, y, z).
Π₁ ⇒ 3x +2y +z = 4
bii) The cross product of the coefficients of λ and μ will give the normal to the plane. The dot-product of that with the constant vector will give the desired constant.
Π₂ ⇒ ((1, 0, 2)×(1, -1, -1))•(x, y, z) = ((1, 0, 2)×(1, -1, -1))•(1, 2, 3)
Π₂ ⇒ 2x +3y -z = 5
c) If the three planes form a sheath, the ranks of their coefficient matrix and that of the augmented matrix must be 2. That is, the determinant must be zero. The value of k that makes the determinant zero is found in part (a) to be -1.
A common approach to determining the rank of a matrix is to reduce it to row echelon form. Then the number of independent rows becomes obvious. (It is the number of non-zero rows.) This form for k=-1 is shown in the picture.