1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
2 years ago
7

Please help. COS (C)=

Mathematics
1 answer:
seropon [69]2 years ago
3 0

Answer:

24/25

Step-by-step explanation:

COS = adjacent/hypotenuse

You might be interested in
Midpoint segment plaese help shcolor in training
Paladinen [302]
Same as any other midpoint of line segment or two points, it is the average of the two points x and y coordinates...

mp=((x1+x2)/2, (y1+y2)/2)

mp=((-6+16)/2, (-9+5)/2)

mp=(10/2, -4/2)

mp=(5, -2)
5 0
3 years ago
Read 2 more answers
Area of a circle of radius is 6.5?​
worty [1.4K]

Answer:

see below

Step-by-step explanation:

The area of a circle is given by

A = pi r^2 where r is the radius

A = pi (6.5)^2

A =42.25 pi

If we approximate pi by 3.14

A = 42.25 * 3.14 =132.665

If we use the pi button

A = 132.7322896

5 0
3 years ago
Read 2 more answers
Which of the following would be a good argument to lease rather than buy?
Arturiano [62]

Answer: B. I prefer the warranty that covers repair costs of a new car

5 0
3 years ago
Read 2 more answers
Please help!!<br> Write a matrix representing the system of equations
frozen [14]

Answer:

(4, -1, 3)

Step-by-step explanation:

We have the system of equations:

\left\{        \begin{array}{ll}            x+2y+z =5 \\    2x-y+2z=15\\3x+y-z=8        \end{array}    \right.

We can convert this to a matrix. In order to convert a triple system of equations to matrix, we can use the following format:

\begin{bmatrix}x_1& y_1& z_1&c_1\\x_2 & y_2 & z_2&c_2\\x_3&y_2&z_3&c_3 \end{bmatrix}

Importantly, make sure the coefficients of each variable align vertically, and that each equation aligns horizontally.

In order to solve this matrix and the system, we will have to convert this to the reduced row-echelon form, namely:

\begin{bmatrix}1 & 0& 0&x\\0 & 1 & 0&y\\0&0&1&z \end{bmatrix}

Where the (x, y, z) is our solution set.

Reducing:

With our system, we will have the following matrix:

\begin{bmatrix}1 & 2& 1&5\\2 & -1 & 2&15\\3&1&-1&8 \end{bmatrix}

What we should begin by doing is too see how we can change each row to the reduced-form.

Notice that R₁ and R₂ are rather similar. In fact, we can cancel out the 1s in R₂. To do so, we can add R₂ to -2(R₁). This gives us:

\begin{bmatrix}1 & 2& 1&5\\2+(-2) & -1+(-4) & 2+(-2)&15+(-10) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\0 & -5 & 0&5 \\3&1&-1&8 \end{bmatrix}

Now, we can multiply R₂ by -1/5. This yields:

\begin{bmatrix}1 & 2& 1&5\\ -\frac{1}{5}(0) & -\frac{1}{5}(-5) & -\frac{1}{5}(0)& -\frac{1}{5}(5) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3&1&-1&8 \end{bmatrix}

From here, we can eliminate the 3 in R₃ by adding it to -3(R₁). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3+(-3)&1+(-6)&-1+(-3)&8+(-15) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&-5&-4&-7 \end{bmatrix}

We can eliminate the -5 in R₃ by adding 5(R₂). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0+(0)&-5+(5)&-4+(0)&-7+(-5) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&-4&-12 \end{bmatrix}

We can now reduce R₃ by multiply it by -1/4:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\ -\frac{1}{4}(0)&-\frac{1}{4}(0)&-\frac{1}{4}(-4)&-\frac{1}{4}(-12) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Finally, we just have to reduce R₁. Let's eliminate the 2 first. We can do that by adding -2(R₂). So:

\begin{bmatrix}1+(0) & 2+(-2)& 1+(0)&5+(-(-2))\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 1&7\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

And finally, we can eliminate the second 1 by adding -(R₃):

\begin{bmatrix}1 +(0)& 0+(0)& 1+(-1)&7+(-3)\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 0&4\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Therefore, our solution set is (4, -1, 3)

And we're done!

3 0
3 years ago
Simplify using the rules of rational exponents
kaheart [24]
I should answere should be C
7 0
3 years ago
Other questions:
  • Can someone explain, please?
    5·1 answer
  • What is 104,229 rounded to the nearest ten thousand
    10·2 answers
  • Subtract 52 - 2 from -37 +4<br><br>​
    5·1 answer
  • (-4,9);m=-1/2<br> Write the equation in point slope form
    9·2 answers
  • I need help ASAP with this problem
    5·1 answer
  • Which inequality has the solution shown below?
    7·1 answer
  • If 1 inch represents 10 miles how many inches will 900 miles​
    11·1 answer
  • Whats the length in meters of CD?​
    11·1 answer
  • Mike found 74 seashells on the beach, he gave Mary some of his
    14·2 answers
  • Write each equation in function notation. y=12+3/4x
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!