Answer:
In 5 hours he would have 7.5 inches of snow JUST from the snowstorm but the question says that he already had 5 inches in his lawn so that would make 12.5 inches of snow in 5 hours.
The second one says t, it doesn't state a number so lets assume the number is ten. So that's 5 more hours of constant snowfall, this makes our total be the sum of 12.5+7.5. This is equal to 20.
10 hours into the snowstorm Nathaniel had 20 inches of snow in his lawn.
Consider a brainliest if it helps :)
Answer:
Step-by-step explanation:
We have volume of cone as

and for a cone always r/h = constant
Given that r' = rate of change of radius = -7 inches/sec
(Negative sign because decresing)
V' =- 948 in^3/sec
Radius = 99 inches and volume = 525 inches
Height at this instant = 
Let us differentiate the volume equation with respect to t using product rule
![V=\frac{1}{3} \pi r^2 h\\V' = \frac{1}{3} \pi[2rhr'+r^2 h']\\-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%20r%5E2%20h%5C%5CV%27%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2rhr%27%2Br%5E2%20h%27%5D%5C%5C-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C)
![-948 = \frac{1}{3} \pi[2(99)(-7)(\frac{0.1607}{\pi})+99^2 h']\\-948 = 33(3.14)(-2.25/3.14 + 99 h')\\-9.149=-0.72+99h'\\-8.429 = 99h'\\h' = 0.08514](https://tex.z-dn.net/?f=-948%20%3D%20%5Cfrac%7B1%7D%7B3%7D%20%5Cpi%5B2%2899%29%28-7%29%28%5Cfrac%7B0.1607%7D%7B%5Cpi%7D%29%2B99%5E2%20h%27%5D%5C%5C-948%20%3D%2033%283.14%29%28-2.25%2F3.14%20%20%2B%2099%20h%27%29%5C%5C-9.149%3D-0.72%2B99h%27%5C%5C-8.429%20%3D%2099h%27%5C%5Ch%27%20%3D%200.08514)
Rate of change of height = 0.08514 in/sec
Distribute first so
2x-x+2=2-x+1
Combine like terms so
x+2=3-x
Get terms on the same side so
2x+2=3
Subtract 2
2x=1
Divide
X=1/2 or .5
Answer:
They are (6, 1) or (3, 2).
Step-by-step explanation:
The factor pairs of 6 are 1×6 and 2×3
So the parallelogram (height by length) could be:
1 by 6
2 by 3
3 by 2
6 by 1.