ANSWER: Increase
why? Because the number of C atoms in homologous series increases gradually.
To solve this, let's assume ideal gas behavior.
PV=nRT
Let's solve for n. Convert units to SI units first.
Pressure = 833 torr(101325 Pa/760 torr) = 111,057.53 Pa
Volume = 250 mL(1 L/1000 mL)(1 m³/1000 L) = 2.5×10⁻⁴ m³
Temperature = 42.4 + 273 = 315.4 K
n = (8,314 J/mol·K)(315.4 K)/(111057.53 Pa)(2.5×10⁻⁴ m³)
n = 94.45 mol
The molar mass of ammonia is 17.031 g/mol.
Mass = 94.45*17.031 = <em>1,608.51 g ammonia</em>
The answer is: the mass of carbon is 420.6 grams.
m(C₈H₁₈) = 500 g; mass of octane.
M(C₈H₁₈) = 114.22 g/mol; molar mass of octane.
n(C₈H₁₈) = m(C₈H₁₈) ÷ M(C₈H₁₈).
n(C₈H₁₈) = 500 g ÷ 114.22 g/mol.
n(C₈H₁₈) = 4.38 mol; amount of octane.
In one molecule of octane, there are eight carbon atoms:
n(C) = 8 · n(C₈H₁₈).
n(C) = 8 · 4.38 mol.
n(C) = 35.02 mol; amount of carbon.
m(C) = 35.02 mol · 12.01 g/mol.
m(C) = 420.6 g; mass of carbone.
Answer:
The correct answer is option a.
Explanation:

Equilibrium concentration cadmium ions = ![[Cd^{2+}]=0.0585 M](https://tex.z-dn.net/?f=%5BCd%5E%7B2%2B%7D%5D%3D0.0585%20M)
Equilibrium concentration fluoride ions = ![[F^{-}]=0.117 M](https://tex.z-dn.net/?f=%5BF%5E%7B-%7D%5D%3D0.117%20M)
Molar solubility is the maximum concentration of salt present in water in ionic form beyond that no more salt will exist in its ionic form and will settle down in bottom of the solution.
The molar solubility of the solid cadmium fluoride = 0.0585 M
..[1]

Due to addition of sodium fluoride will increase concentration of fluoride in the solution.And due to common ion effect the equilibrium will shift in backward direction in [1], that is precipitation of more cadmium fluoride.
Hence, decrease in solubility will be observed.
Whether or not they are within the same group (vertical columns) within the periodic table, determines similarity of chemical properties.