If we consider a combustion reaction of Methane:
The balanced equation is:
CH4 + 2O2 ---> 2H2O + CO2
The rate of appearance of H2O is rH2O, rate of disappearance of O2 is -rO2
(rH2O)^2 = (-rO2)^2
rH2O = -rO2
Use the following equations to fill the chart.
E = hf
where
h = 6.63 x 10⁻³⁴ J/s, Planck's constant
f = frequency Hz
E = quanta of energy, J
c = fλ
where
c = 3 x 10⁸ m/s, the velocity of light
λ = wavelength, m
If energy is given in J/mmol, divide by Avogadro's number, N = 6.02 x 10²³, to convert it to J.
The completed table is shown below.
We are given with
Cobalt phosphate - CoPO4
We are asked for the net ionic equation for the phosphate dissolving in H3O+
The net ionic equation is
CoPO4 (s) + H3O+ (aq) -----> HPO42- (aq) + Co3+ (aq) + H2O *(l)
From the equation:
4mol Li react with 1 mol O2
Molar mass Li = 7g/mol
mol in 84g Li = 84/7 = 12 mol Li
From the equation - 12 mol Li will react with 3 mol O2
At STP 1 mol O2 has volume = 22.4L
<span>
At STP 3 mol O2 has volume = 3*22.4 = 67.2L O2 gas will react. </span>
Answer:
59.92 × 10²³ atoms are in 9.95 moles of iron
1.8 ×10²² molecules are in 0.03 moles of Carbon dioxide
1.19 moles are found in 7.20 x 10^23 atoms of platinum