Answer:
-<u>T</u><u>h</u><u>e</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u>crosses <u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>o</u><u>i</u><u>n</u><u>t</u><u> </u><u>(</u>0,0)
<u>N</u><u>o</u><u>n</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>i</u><u>v</u><u>e</u><u>n</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u>s</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u>
<u>A</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u><u>c</u><u>r</u><u>o</u><u>s</u><u>s</u><u>e</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>o</u><u>i</u><u>n</u><u>t</u><u> </u><u>(</u>0,y).<u>T</u><u>h</u><u>i</u><u>s</u><u> </u><u>m</u><u>e</u><u>a</u><u>n</u><u>s</u><u> </u><u>t</u><u>h</u><u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>g</u><u>r</u><u>a</u><u>p</u><u>h</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>c</u><u>r</u><u>o</u><u>s</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u>y-axis <u>w</u><u>h</u><u>e</u><u>n</u><u> </u>x-=0
To find the point where the graph crosses the y-axis,substitute x=0 into the given equation y-9x
substitute x=0 into the equation y-9x to find the corresponding value of y
That is,
y=9(0)
y=0
therefore the graph crosses the y-axis at the point (0,0)
Step-by-step explanation:
hope it hlps
Answer:
22.86% probability that the persons IQ is between 110 and 130
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If one person is randomly selected what is the probability that the persons IQ is between 110 and 130
This is the pvalue of Z when X = 130 subtracted by the pvalue of Z when X = 110.
X = 130



has a pvalue of 0.9772
X = 110



has a pvalue of 0.7486
0.9772 - 0.7486 = 0.2286
22.86% probability that the persons IQ is between 110 and 130
Answer:
No b/c the hypotenuse is too short
Step-by-step explanation:
13² + 15² = 19²
169 + 225 = 361
394 ≠ 361