One hundred more than 792 = 792 + 100
792 + 100 = 892
892 is your answer
hope this helps
I would say d that what i got.
Answer:
x = 10
Step-by-step explanation:
9x - 40 = 3x + 20
<u>9</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>x</u> - 40 = <u>3x - 3x</u> + 20
6x - 40 = 20
6x <u>-</u><u> </u><u>40</u><u> </u><u>+</u><u> </u><u>40</u> = <u>20</u><u> </u><u>+</u><u> </u><u>40</u>
6x = 60
<u>6x</u><u> </u><u>/</u><u> </u><u>6</u> = <u>60</u><u> </u><u>/</u><u> </u><u>6</u>
x = 10
Now plug the x value in the equation to make the statement true that A is parallel to B.
9x - 40
<u>9</u><u>(</u><u>10</u><u>)</u> - 40
<u>90</u><u> </u><u>-</u><u> </u><u>40</u>
50
3x + 20
<u>3</u><u>(</u><u>10</u><u>)</u> + 20
<u>30</u><u> </u><u>+</u><u> </u><u>20</u>
50
Therefore, x = 10 making the statement true that A is parallel to B. Hope this helps and stay safe, happy, and healthy, thank you :) !!
Any proper CDF
has the properties
• ![\displaystyle \lim_{x\to-\infty} F(x) = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto-%5Cinfty%7D%20F%28x%29%20%3D%200)
• ![\displaystyle \lim_{x\to+\infty} F(x) = 1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto%2B%5Cinfty%7D%20F%28x%29%20%3D%201)
so we have to have a = 0 and b = 1.
This follows from the definitions of PDFs and CDFs. The PDF must satisfy
![\displaystyle \int_{-\infty}^\infty f(x) \, dx = 1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f%28x%29%20%5C%2C%20dx%20%3D%201)
and so
![\displaystyle \lim_{x\to-\infty} F(x) = \int_{-\infty}^{-\infty} f(t) \, dt = 0 \implies a = 0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto-%5Cinfty%7D%20F%28x%29%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%7B-%5Cinfty%7D%20f%28t%29%20%5C%2C%20dt%20%3D%200%20%5Cimplies%20a%20%3D%200)
![\displaystyle \lim_{x\to+\infty} F(x) = \int_{-\infty}^\infty f(t) \, dt = 1 \implies b = 1](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto%2B%5Cinfty%7D%20F%28x%29%20%3D%20%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f%28t%29%20%5C%2C%20dt%20%3D%201%20%5Cimplies%20b%20%3D%201)