Answer:
The answer is B.
Step-by-step explanation:
To obtain the inverse of a relation you simply interchange the x and y coordinates of each pair.
Here:
(3,1) becomes (1,3)
(3,1) becomes ((1,3)
(7, -7) becomes (-7,7) and
(12, -15) becomes (-15, 12)
There would be 3 and 1/2 pounds left.
2/3 x 2 = 4/6
5/6
5/6 + 4/6 = 6/6 (1) and 3/6 (1/2)
The shipping fee is $30
1. 12%×250
= 250×12/100
= 2.5 ×12
= 5/2×12
=60/2
=30
A function is a relation where there is only one output for every input. In other words for every x value, there is only one y value.
Example : Multiply by 3 is a very simple function.
Input : 0 Output : 0
Input : 1 Output : 3
Input : 2 Output : 6
Input : 3 Output :9
And so on!
Hope this helps!
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Chain Rule:
![\displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20%5Csqrt%7Bx%7D%29%5E%7B2%20-%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20%5Csqrt%7Bx%7D%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%5E%7B2%20-%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D)
- Simplify:
![\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D)
- Basic Power Rule:

- Simplify:

- Rewrite [Exponential Rule - Rewrite]:

- Multiply:
![\displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%5B%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%20%2B%20%5Cfrac%7Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5D)
- [Brackets] Add:

- Multiply:

- Rewrite [Exponential Rule - Root Rewrite]:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e