1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
2 years ago
11

B is the midpoint of AC and D is the mid point of CE solve for x given BD=3x + 5 and AE= 4x+20

Mathematics
1 answer:
Elena L [17]2 years ago
8 0

Answer:triangle BCD is similar to triangle ACE (side, angle C, side)

AC = 2 BC

therefore AE = 2 BD

therefore

4x+20 = 2 (3x+5) solve that


Step-by-step explanation:


You might be interested in
Find the inverse of the given relation.
il63 [147K]

Answer:

The answer is B.

Step-by-step explanation:

To obtain the inverse of a relation you simply interchange the x and y coordinates of each pair.

Here:

(3,1) becomes (1,3)

(3,1) becomes ((1,3)

(7, -7) becomes (-7,7) and

(12, -15) becomes (-15, 12)


6 0
3 years ago
a grocery store has 5 pounds of granola. One customer buys 2/3 pounds of granola and another buys 5/6 pounds. after these purcha
Pavlova-9 [17]
There would be 3 and 1/2 pounds left. 

2/3 x 2 = 4/6
5/6 
5/6 + 4/6 = 6/6 (1) and 3/6 (1/2)
3 0
2 years ago
Read 2 more answers
Use mental math to find the amount of a 12% shipping fee for an item that costs $250. Explain your steps.
makvit [3.9K]
The shipping fee is $30
1. 12%×250
= 250×12/100
= 2.5 ×12
= 5/2×12
=60/2
=30
8 0
3 years ago
Read 2 more answers
HELP ASAP I GIVE BIG BRAIN
sukhopar [10]

A function is a relation where there is only one output for every input. In other words for every x value, there is only one y value.

Example : Multiply by 3 is a very simple function.

Input : 0 Output : 0

Input : 1 Output : 3

Input : 2 Output : 6

Input : 3 Output :9

And so on!

Hope this helps!

6 0
2 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • Need help with this one
    6·1 answer
  • The quadrilateral has vertices A(3,5), B(2,0), C(7,0) and D(8,5). Which statement about the quadrilateral is true
    15·1 answer
  • What is the simplified form of the expression? 9. (m^7)^2 a) 2m^14 b) m^49 c) m^9 d) m^14
    8·1 answer
  • Richard took a handful of pencils from a large box. Out of 15 pencils in his hand 4 was glittery. How many glittery pencils shou
    5·1 answer
  • PLEASEE HELP ANYONE WHO IS GOOD AT MATH
    8·2 answers
  • First is brainlest because i need help
    8·1 answer
  • Order the numbers<br> from Least to greatest<br> -4, -3, -4,1
    7·2 answers
  • What is m∠CDJ ? Enter your answer in the box. ° Line A K and line M J intersect at a right angle at point D. Line L C also passe
    9·2 answers
  • A circle with a circumference of 111.6 cm is centered at the vertex of an angle. The rays of the angle subtend an arc that is 13
    15·1 answer
  • Find the prime factorization of 560 using exponents.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!