Answer: 20. 4, 3, 2, 1...
21. 17....
Step-by-step explanation:
Answer:
<em>As </em><em>we </em><em>know </em><em>that </em><em>there </em><em>is </em><em>a </em><em>radius </em><em>which </em><em>is </em><em>2 </em><em>cm</em>
<em>so </em>
<em>circumference </em><em>=</em><em> </em><em>2</em><em> </em><em>π</em><em> </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>*</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em>c</em><em>m</em>
<em>it's </em><em>circumference </em><em>is </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em> </em><em>cm</em>
Answer:
False i just did it
Step-by-step explanation:
remember that local minimuns are points in which the function was decreasing and starts increasing.
you can try two ways of doing it, graphing the functions or using derivatives.
since this are twelve functios the easier way is to graph them.
start by function y=x
in this case this function is continously increasing as x increases, which means that it does not have any local maxima or minima.
now do the same for

this graph has a local minima on th
We need to solve for x. Let's try problem b:

Let us first combine line terms. 3x and -x as well as 1 and -7 can be combined. Let's do that:

Since this is true, your answer would be:
All real numbers
------------------------------------------------------------------
Let's solve for problem c:

Let's isolate x, so subtract 1 from both sides:

Since x can't have a coefficient, divide both sides by 3:


So, only the value of 14 would make this equation true.
------------------------------------------------------------------
Let's try problem d:

Let's get our whole numbers on the right side. Add 1 to both sides:

Subtract 4x from the right side on both sides:

Since this is not true, your answer would be:
No solution