Answer
given,
mass = 100 kg
acceleration = 10 m/s²
A mass 20 kg slides over 100 kg block
acceleration = 3 m/s²
horizontal friction exerted by the 100 kg block on 20 kg
using newton's second law
F - f = 0
F = f
f = ma
f = 20 × 3
f = 60 N
now net force acting on the 100 kg block
F_net = m a
F_net = 100 x 10
F_net = 1000 N
after 20 kg block falls the acceleration of the bock
F = 1000 +60
F = 1060 N
acceleartion on the block


a = 10.60 m/s²
Explanation:
In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the macroscopic energy associated with a system. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.
Answer:
22/2 = 11
Explanation:
A quotient means the result of a division problem. When it says the quotient of a and b, this means of "a divided by b". Remember to always go in the right order, because in division, order matters.
Therefore the quotient of 22 and 2 is equal to 11 is written: 22/2 = 11
Speed of Ferry is towards North with magnitude 6.2 m/s
Here if we assume that North direction is along Y axis and East is along X axis then we can say

Now a person walk on ferry with speed 1.5 m/s towards east with respect to Ferry
so it is given as

also by the concept of relative motion we know that

now plug in all values in it


now if we need to find the speed of the person then we need to find its magnitude
so it is given as

