It's the second graph!
it's the only one with a negative gradient.
so the temperature of the ball will fall in water as it looses its heat.
activate windows,:-P
Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.
Answer:
4.02 s
Explanation:
From the question given above, the following data were obtained:
Angle of projection (θ) = 35°
Initial velocity (u) = 50 m/s
Acceleration due to gravity (g) = 10 m/s²
Time of flight (T) =?
The time of flight of the arrow can be obtained as follow:
T = 2uSineθ / g
T = 2 × 35 × Sine 35 / 10
T = 70 × 0.5736 / 10
T = 7 × 0.5736
T = 4.02 s
Therefore, the time taken for the arrow to return is 4.02 s