No. Terrance cannot move the sled. This is because, the force that he produces is 80*3 Newton’s, which is only 240 Newton’s, but since the sled needs a force of 250 Newton’s, he cannot move the sled (even though the difference is only by 10 Newton’s).
Answer:
efficiency of a machine is less than 100% because some part is energy is utilized to overcome some opposing forces like friction which is wasted as heat ,sound energy etc
Explanation:
Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².
Answer:
95 %
99.7 %
Explanation:
= 166 cm = Mean
= 5 cm = Standard deviation
a) 156 cm and 176 cm


From the empirical rule 95% of all values are within 2 standard deviation of the mean, so about 95% of men are between 156 cm and 176 cm.
b) 151 cm and 181 cm


The empirical rule tells us that about 99.7% of all values are within 3 standard deviations of the mean, so about 99.7% of men are between 151 cm and 181 cm.