Answer:
3. 150.72 in²
4. 535.2cm²
Step-by-step Explanation:
3. The solid formed by the net given in problem 3 is the net of a cylinder.
The cylinder bases are the 2 circles, while the curved surface of the cylinder is the rectangle.
The surface area = Area of the 2 circles + area of the rectangle
Take π as 3.14
radius of circle = ½ of 4 = 2 in
Area of the 2 circles = 2(πr²) = 2*3.14*2²
Area of the 2 circles = 25.12 in²
Area of the rectangle = L*W
width is given as 10 in.
Length (L) = the circumference or perimeter of the circle = πd = 3.14*4 = 12.56 in
Area of rectangle = L*W = 12.56*10 = 125.6 in²
Surface area of net = Area of the 2 circles + area of the rectangle
= 25.12 + 125.6 = 150.72 in²
4. Surface area of the net (S.A) = 2(area of triangle) + 3(area of rectangle)
= 
Where,
b = 8 cm
h = ![\sqrt{8^2 - 4^2} = \sqrt{48} = 6.9 cm} (Pythagorean theorem)w = 8 cm[tex]S.A = 2(0.5*8*6.9) + 3(20*8)](https://tex.z-dn.net/?f=%20%5Csqrt%7B8%5E2%20-%204%5E2%7D%20%3D%20%5Csqrt%7B48%7D%20%3D%206.9%20cm%7D%20%28Pythagorean%20theorem%29%3C%2Fp%3E%3Cp%3Ew%20%3D%208%20cm%3C%2Fp%3E%3Cp%3E%5Btex%5DS.A%20%3D%20%202%280.5%2A8%2A6.9%29%20%2B%203%2820%2A8%29)



Hello,
That 's not my cup of "coffee".
G=-2+1/1200 * 100 +5/1200 * 20=-11/6=-1.833333....
Answer C loss $1.83
C. It’s c bebes hope it get a 100
Answer:
x = -12 x = -5
Step-by-step explanation:
-7x-60=x^2+10x
Add 7x to each side
-60=x^2+10x+7x
-60=x^2+17x
Add 60 to each side
0 = x^2+17x+60
Factor
What 2 numbers multiply to 60 and add to 17
12*5 = 60
12+5 = 17
0 = (x+12) (x+5)
Using the zero product property
x+12 = 0 x+5 =0
x = -12 x = -5
1. <span>The yz-plane is the plane x = 0. </span>
So, The general rule of reflection over the yz- plane is <span>(x,y,z) →(−x,y,z)
</span>
===========================================
<span>2. Applying the rule found in (1)
</span>
<span>the new points of the shape after this reflection will be
</span>
P(–1, 2, 0) ⇒⇒⇒ <span>P'(1, 2, 0)
</span>Y(2, 3, 0) <span>⇒⇒⇒ Y'(-2, 3, 0)
</span>
R(–3, 4, 0) ⇒⇒⇒ <span>R'(3, 4, 0)
</span>
A(–2, 1, 5) ⇒⇒⇒ A'(2, 1, 5)
=============================================
3. Applying the transformation rule <span>(x, y, z) → (x + 2, y + 4, z – 3)
</span>
<span />to the points from number 2
<span>P'(1, 2, 0) ⇒⇒⇒
P" (3 , 6 , -3 )
</span><span>Y'(-2, 3, 0) ⇒⇒⇒ Y" (0 , 7 , -3)
</span><span>R'(3, 4, 0) ⇒⇒⇒ R" ( 5 , 8 , -3)
</span>A'(2, 1, 5) ⇒⇒⇒ A" ( 4 , 5 , 2)