Y = xe^x dy/dx(e^x x)=>use the product rule, d/dx(u v) = v*(du)/(dx)+u*(dv)/(dx), where u = e^x and v = x: = e^x (d/dx(x))+x (d/dx(e^x)) y' = e^x x+ e^x y'(0) = 1 => slope of the tangent slope of the normal = -1 y - 0 = -1(x - 0) y = -x => normal at origin