Answer:
A continuous probability distribution having a rectangular shape, where the probability is evenly distributed over an interval of numbers is a(n) __uniform__________ distribution
Step-by-step explanation:
Given that there is a continuous probability distribution having a rectangular shape, where the probability is evenly distributed over an interval of numbers
Since the pdf is rectangular in shape and total probability is one we can say all values in the interval would be equally likely
Say if the interval is (a,b) P(X) = p the same for all places
Since total probability is 1,
we get integral of P(X)=p(b-a) =1
Or p= 
this is nothing but a uniform distribution continuous defined in the interval
A continuous probability distribution having a rectangular shape, where the probability is evenly distributed over an interval of numbers is a(n) __uniform__________ distribution
Answer:
A right angle.
Step-by-step explanation:
65+25 =90
Answer:
The second option
Step-by-step explanation:
On the right hand side you have all the multiples of 4, on the left hand side you have 5
The multiples of four are ...,-8,-4,0,4,8,....
so the simbol that means that 5 is not an element of the multiples of four is the second option.
Answer: 
Step-by-step explanation:
Given
The temperature on Tuesday is 
Temperature drops to
on Wednesday
Net drop in temperature 
The temperature drops twice from Wednesday to Thursday

Temperature on Thursday

Answer:
1c

1d

Step-by-step explanation:
From the question we are told that
The probability of telesales representative making a sale on a customer call is 
The mean is 
Generally the distribution of sales call made by a telesales representative follows a binomial distribution
i.e
and the probability distribution function for binomial distribution is
Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the mean is mathematically represented as

=> 
=> 
Generally the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95 is mathematically represented as

=> 
=> ![P( X \ge 1) = 1 - [ ^{n}C_0 * (0.15 )^0 * (1- 0.15)^{n-0}] > 0.95](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%201%29%20%3D%201%20-%20%5B%20%5E%7Bn%7DC_0%20%2A%20%20%280.15%20%29%5E0%20%2A%20%20%281-%200.15%29%5E%7Bn-0%7D%5D%20%3E%200.95)
=> ![1 - [1 * 1* (0.85)^{n}] > 0.95](https://tex.z-dn.net/?f=%201%20-%20%5B1%20%20%2A%20%201%2A%20%20%280.85%29%5E%7Bn%7D%5D%20%3E%200.95)
=> ![[(0.85)^{n}] > 0.05](https://tex.z-dn.net/?f=%20%20%5B%280.85%29%5E%7Bn%7D%5D%20%3E%200.05)
taking natural log of both sides

=> 