<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em> </em><em>.</em><em>.</em>
Answer:
The future value of this initial investment after the six year period is $2611.6552
Step-by-step explanation:
Consider the provided information.
A student desired to invest $1,540 into an investment at 9% compounded semiannually for 6 years.
Future value of an investment: 
Where Fv is the future value, p is the present value, r is the rate and n is the number of compounding periods.
9% compounded semiannually for 6 years.
Therefore, the value of r is: 
Number of periods are: 2 × 6 = 12
Now substitute the respective values in the above formula.




Hence, the future value of this initial investment after the six year period is $2611.6552
I believe you combine the first and last terms first because they have the same denominator
<u>Answer-</u>
<em>The probability of winning on the first roll is </em><em>0.22</em>
<u>Solution-</u>
As in the game of casino, two dice are rolled simultaneously.
So the sample space would be,

Let E be the event such that the sum of two numbers are 7, so
E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}


Let F be the event such that the sum of two numbers are 11, so
F = {(6,5), (5,6)}


Now,
