1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
3 years ago
6

How to prove this???

Mathematics
1 answer:
swat323 years ago
4 0
\cos^3 2A + 3 \cos 2A \\
\Rightarrow \cos 2A (\cos^2 2A + 3) \\
\Rightarrow (\cos^2 A - \sin^2 A) (\cos^2 2A + 3)  \\
\Rightarrow (\cos^2 A - \sin^2 A) (1 - \sin^2 2A + 3) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - \sin^2 2A) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - (2\sin A \cos A)(2\sin A \cos A)) \\
\Rightarrow (\cos^2 A - \sin^2 A) (4 - 4\sin^2 A \cos^2 A) \\ 
\Rightarrow 4(\cos^2 A - \sin^2 A) (1 - \sin^2 A \cos^2 A) 


go to right side now

4( \cos^6 A - \sin^6 A)\\
\Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A)

use x^3 - y^3 = (x-y)(x^2 + xy + y^2) and x^3 + y^3 = x^2 - xy + y^2

4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4( \cos^3 A - \sin^3 A)(\cos^3 A + \sin^3 A) \\
\Rightarrow  4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\
~\quad  \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A)

so \sin^2 A + \cos^2 A = 1

4( \cos^6 A - \sin^6 A)\\ \Rightarrow 4(\cos A - \sin A)(\cos^2 A + \cos A \sin A + \sin^2 A) \\ ~\quad \quad\cdot ( \cos A + \sin A)(\cos^2 A - \cos A \sin A + \cos^2 A) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 + \cos A \sin A )(1- \cos A \sin A ) \\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \cos^2 A \sin^2 A )\\ \Rightarrow 4(\cos^2 A - \sin^2 A)(1 - \sin^2 A \cos^2 A ) \\
 \Rightarrow Left hand side
You might be interested in
PLZ HELP PLZ HELP. Select the net of the square pyramid. Then, use the the net to select the surface area.
Lilit [14]
The first net


Surface area: 28.2
3 0
3 years ago
Help. <br>Please its urgent show workings.<br>​
laiz [17]

Answer:

see explanation

Step-by-step explanation:

There are 2 possible approaches to differentiating these.

Expand the factors and differentiate term by term, or

Use the product rule for differentiation.

I feel they are looking for use of product rule.

Given

y = f(x). g(x) , then

\frac{dy}{dx} = f(x).g'(x) + g(x).f'(x) ← product rule

(a)

y = (2x - 1)(x + 4)²

f(x) = 2x - 1 ⇒ f'(x) = 2

g(x) = (x + 4)²

g'(x) = 2(x + 4) × \frac{d}{dx} (x + 4) ← chain rule

       = 2(x + 4) × 1

        = 2(x + 4)

Then

\frac{dy}{dx} = (2x - 1). 2(x + 4) + (x + 4)². 2

    = 2(2x - 1)(x + 4) + 2(x + 4)² ← factor out 2(x + 4) from each term

    = 2(x + 4) (2x - 1 + x + 4)

    = 2(x + 4)(3x + 3) ← factor out 3

    = 6(x + 4)(x + 1)

--------------------------------------------------------------------------

(b)

y =  x(x² - 1)³

f(x) = x ⇒ f'(x) = 1

g(x) = (x² - 1)³

g'(x) = 3(x² - 1)² × \frac{d}{dx} (x² - 1) ← chain rule

        = 3(x² - 1)² × 2x

        = 6x(x² - 1)²

Then

\frac{dy}{dx} = x. 6x(x² - 1)² + (x² - 1)³. 1

    = 6x²(x² - 1)² + (x² - 1)³ ← factor out (x² - 1)²

    = (x² - 1)² (6x² + x² - 1)

     = (x² - 1)²(7x² - 1)

----------------------------------------------------------------------

(c)

y = (x² - 1)(x³ + 1)

f(x) = x² - 1 ⇒ f'(x) = 2x

g(x) = (x³ + 1) ⇒ g'(x) = 3x²

Then

\frac{dy}{dx} = (x² - 1). 3x² + (x³ + 1), 2x

   = 3x²(x² - 1) + 2x(x³ + 1) ← factor out x

   = x[3x(x² - 1) + 2(x³ + 1) ]

   = x(3x³ - 3x + 2x³ + 2)

   = x(5x³ - 3x + 2) ← distribute

    = 5x^{4} - 3x² + 2x

--------------------------------------------------------------------

(d)

y = 3x³(x² + 4)²

f(x) = 3x³ ⇒ f'(x) = 9x²

g(x) = (x² + 4)²

g'(x) = 2(x² + 4) × \frac{d}{dx}(x² + 4) ← chain rule

       = 2(x² + 4) × 2x

       = 4x(x² + 4)

Then

\frac{dy}{dx} = 3x³. 4x(x² + 4) + (x² + 4)². 9x²

    = 12x^{4}(x² + 4) + 9x²(x² + 4)² ← factor out 3x²(x² + 4)

    = 3x²(x² + 4) [ 4x² + 3(x² + 4) ]

    = 3x²(x² + 4)(4x² + 3x² + 12)

    = 3x²(x² + 4)(7x² + 12)

5 0
3 years ago
The flag football league eventually had 72 kids sign up for the spring season after putting six teams together from the original
enyata [817]

Answer:

each team has 12

Step-by-step explanation:

8 0
3 years ago
What are the coordinates of the point on the directed line segment from (-2, 9)(−2,9) to (-1, -4)(−1,−4) that partitions the seg
skelet666 [1.2K]

Answer:

Therefore the coordinates of the point on the directed line segment from (-2, 9) to (-1, -4) that partitions the segment into a ratio of 2 to 3 is

P(x,y)=(-\dfrac{8}{5},\dfrac{19}{5})

Step-by-step explanation:

Given:

Let point P divides Segment AB in the ratio 2 : 3

point A( x₁ , y₁) ≡ ( -2 , 9 )  

point B( x₂ , y₂) ≡ ( -1 , -4 )

m : n = 2 : 3

To Find:

P( x, y ) = ?

Solution:

Ia a Point P divides Segment AB internally in the ratio m : n, then the Coordinates of Point P is given by Section Formula as

x=\dfrac{(mx_{2} +nx_{1}) }{(m+n)}\\ \\and\\\\y=\dfrac{(my_{2} +ny_{1}) }{(m+n)}\\\\

Substituting the values we get

x=\dfrac{(2(-1) +3(-2))}{(2+3)}\\ \\and\\\\y=\dfrac{(2(-4) +3(9)) }{(2+3)}\\\\

x=\dfrac{-8}{5}\\ \\and\\\\y=\dfrac{19}{5}\\\\

Therefore the coordinates of the point on the directed line segment from (-2, 9) to (-1, -4) that partitions the segment into a ratio of 2 to 3 is

P(x,y)=(-\dfrac{8}{5},\dfrac{19}{5})

7 0
3 years ago
When developing a plan for a geometric proof, which of the following is not important?
Galina-37 [17]
The answer is B. determining the number of steps needed is not important when developing a plan for a geometric proof.
5 0
3 years ago
Read 2 more answers
Other questions:
  • Model subtraction of fraction:
    14·1 answer
  • What is the answer to this ???
    14·1 answer
  • If g(x) is the inverse f(x) and f(x)=4x+12,what is g(x)
    11·1 answer
  • A patient is supposed to receive a 1 1/3 mg of medication per kilogram of a wave is a patient weighs 87 kg how many milligrams o
    11·1 answer
  • 1.) Multiply 2ab(−a+2b+3).(1 point)
    15·1 answer
  • 0, 13, 26, 39 is arithmetic or geometric
    12·2 answers
  • The roof of a house is in the shape of a square pyramid and its net is shown below. The length of each side of the square is 30
    7·1 answer
  • Given the equation that describes a quadratic function is
    6·1 answer
  • Please help I don't undestand
    9·1 answer
  • WILL MARK BRAINLIEST!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!