Sure, each of the following lines.
8x-6+3x-1
11x-6-1
and, 11x-7
Step by step:
y^2- 14y+48=0
y^2-14y=-48
y^2-14y+49=-48+49
(y-7)^2=1
Answer: y=7+-1
Answer:
![\large\boxed{y=\dfrac{1}{4}x+3}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7By%3D%5Cdfrac%7B1%7D%7B4%7Dx%2B3%7D)
Step-by-step explanation:
The slope-intercept form of an equation of a line:
![y=mx+b](https://tex.z-dn.net/?f=y%3Dmx%2Bb)
m - slope
b - y-intercept → (0, b)
From the graph we have the points (4, 4) and (0, 3) → b = 3.
We have the equation:
![y=mx+3](https://tex.z-dn.net/?f=y%3Dmx%2B3)
The formula of a slope:
![m=\dfrac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
Put the coordinates of the points:
![m=\dfrac{3-4}{0-4}=\dfrac{-1}{-4}=\dfrac{1}{4}](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7B3-4%7D%7B0-4%7D%3D%5Cdfrac%7B-1%7D%7B-4%7D%3D%5Cdfrac%7B1%7D%7B4%7D)
Finally we have:
![y=\dfrac{1}{4}x+3](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B4%7Dx%2B3)
Check the picture below, so the circle looks more or less like so, with a radius of 9.
![\textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=9 \end{cases}\implies C=2\pi (9)\implies C\approx 57](https://tex.z-dn.net/?f=%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D9%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%20%289%29%5Cimplies%20C%5Capprox%2057)