Answer:
I think there both negative but I'm not sure
Step-by-step explanation:
if one is a positive and one is a negative then reflect over the y axis they should both turn negative
\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
The train will have been traveling for 4 hours
train A=45,90,135, 180
train B=0,60,120,180
Answer:




Step-by-step explanation:
The diagonals of a rhombus are perpendicular to each other, so angles (2) and (3) are equal 90°.
To find angle (1), we can use the sum of internal angles in the left triangle with angles 52°, (1), and (2):



The diagonals of a rhombus bisects the angles, to the angle next to the angle of 52° is also 52°, then, in the upper triangle, we have:

