Let the amount deposited (principal) be x, then the amount after the required time = 2x.
A = P(1 + r/n)^nt: where A is the future value = 2x, P is the principal = x, r is the rate = 0.75%, n is the number of accumulation in a year = 12, t is the number of years.
2x = x(1 + 0.0075/12)^12t
2 = (1 + 0.000625)^12t
log 2 = 12t log (1.000625)
log 2 / log (1.000625) = 12t
1109.38 = 12t
t = 92 years
Answer:
Ezra can water at most approximately 8 sunflower plants with the remaining amount of water.
Step-by-step explanation:
Given the inequality function
0.7S+0.5L≤11 where S represent the number of sunflower plants and L represent the number of lily plants Ezra's water supply can water, if Ezra waters 10 lily plants, then we can calculate the maximum amount of sunflower plant that he can water with the remaining amount of water by simply substituting L = 10 into the inequality function as shown;
0.7S+0.5L≤11
0.7S+0.5(10)≤11
0.7S+5≤11
Taking 5 to the other side:
0.7S≤11-5
0.7S≤6
S≤6/0.7
S≤8.57
This shows that Ezra can water at most approximately 8 sunflower plants with the remaining amount of water.
You need to use a ratio of height (H) to shadow length (L) to solve the first problem. It's basically a use of similar triangles, with two perpendicular sides, and with the shadow making the same angle with the vertical.
6 ft = 72 ins, so that rH/L = 72/16 = 9/2 for the player.
So the bleachers are 9/2 x 6 ft = 27 ft.
For the second problem, 9 ft = 108 in, so that the ratio of the actual linear dimensions to the plan's linear dimensions are 9ft/(1/2in) = 2 x 108 = 216.
So the stage will have dimensions 216 times larger than 1.75" by 3".
That would be 31ft 6ins x 54ft.
Live long and prosper.
Answer:
y=-7
Step-by-step explanation:
when it is hohorizontal lile this it is y=-7