Answer:
y=1
Step-by-step explanation:
since there is no slope all you have is the y intercept so all you have to put is the y-intercept. That easy!
The answer is
B. 13ab
5ab+9ab-ab
=(5ab+9ab)-ab
14ab-ab
=13ab
Hope it helped : )
Answer:
(a) 283 days
(b) 248 days
Step-by-step explanation:
The complete question is:
The pregnancy length in days for a population of new mothers can be approximated by a normal distribution with a mean of 268 days and a standard deviation of 12 days. (a) What is the minimum pregnancy length that can be in the top 11% of pregnancy lengths? (b) What is the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths?
Solution:
The random variable <em>X</em> can be defined as the pregnancy length in days.
Then, from the provided information
.
(a)
The minimum pregnancy length that can be in the top 11% of pregnancy lengths implies that:
P (X > x) = 0.11
⇒ P (Z > z) = 0.11
⇒ <em>z</em> = 1.23
Compute the value of <em>x</em> as follows:

Thus, the minimum pregnancy length that can be in the top 11% of pregnancy lengths is 283 days.
(b)
The maximum pregnancy length that can be in the bottom 5% of pregnancy lengths implies that:
P (X < x) = 0.05
⇒ P (Z < z) = 0.05
⇒ <em>z</em> = -1.645
Compute the value of <em>x</em> as follows:

Thus, the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths is 248 days.
Answer:
(6,6)
Step-by-step explanation:
The midpoint formula is
. Substitute (2,10) and (10,2) into this formula and simplify.

Answer:

And the z score for 0.4 is

And then the probability desired would be:

Step-by-step explanation:
The normal approximation for this case is satisfied since the value for p is near to 0.5 and the sample size is large enough, and we have:


For this case we can assume that the population proportion have the following distribution
Where:


And we want to find this probability:

And we can use the z score formula given by:

And the z score for 0.4 is

And then the probability desired would be:
