Answer:
0.2
Step-by-step explanation:
30: 1
6:?
cross multiply
(6*1)/30
ans:0.2cm
Answer:
The third option
Step-by-step explanation:
The third option represents 65 over 100, meaning 65% of whatever of it would the 65% of 90 be
Answer:
![\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%7D)
Step-by-step explanation:
Our expression is:
.
Let's focus on the cube root of 81 first. What's the prime factorisation of 81? It's simply: 3 * 3 * 3 * 3, or
. Put this in for 81:
![\sqrt[3]{81} =\sqrt[3]{3^3*3}=\sqrt[3]{3^3} *\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B81%7D%20%3D%5Csqrt%5B3%5D%7B3%5E3%2A3%7D%3D%5Csqrt%5B3%5D%7B3%5E3%7D%20%2A%5Csqrt%5B3%5D%7B3%7D)
We know that the cube root of 3 cubed will cancel out to become 3, but the cube root of 3 cannot be further simplified, so we keep that. Our outcome is then:
![\sqrt[3]{3^3} *\sqrt[3]{3}=3\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%5E3%7D%20%2A%5Csqrt%5B3%5D%7B3%7D%3D3%5Csqrt%5B3%5D%7B3%7D)
Now, let's multiply this by 1/3, as shown in the original problem:
![\frac{1}{3}* 3\sqrt[3]{3}=\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%2A%203%5Csqrt%5B3%5D%7B3%7D%3D%5Csqrt%5B3%5D%7B3%7D)
Thus, the answer is
.
<em>~ an aesthetics lover</em>
Answer:
Only d) is false.
Step-by-step explanation:
Let
be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that
. 0 is a root of p, so we have that
.
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.
If 12 is 20%, then 24 is 40%, then 36 is 60%, then 48 is 80%, then 60 is 100%
So there are 60 questions on the test.