Intersecting Chord Theorem:
X = 1/2(78 + 76)
X = 1/2(154)
x = 77
Oh, I adore magic squares!
We need all rows to be equivalent, so try adding up the bottom (complete) row to get 7x-4x+3x=10x-4x=6x.
To solve the middle number, we have -2x+X+6x=6x, so X=2x.
To solve the top number, we have X+8x-3x=6x, so X=6x-8x+3x=x
Now check first column,
x-2x+7x=6x ok
Second column
8x+2x-4x=6x ok
Top-right to bottom-right diagonal: x+2x+3x=6x, ok
Bottom-left to top right diagonal: 7x+2x-3x=6x
So everything is ok!
bearing in mind that perpendicular lines have negative reciprocal slopes, hmmm what's the slope of the equation above?
![\bf 2x-4y+8=0\implies -4y=-2x-8\implies y = \cfrac{-2x-8}{-4} \\\\\\ y = \cfrac{-2x}{4}-\cfrac{8}{-4}\implies y = \stackrel{\stackrel{m}{\downarrow }}{-\cfrac{1}{2}}x+2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%202x-4y%2B8%3D0%5Cimplies%20-4y%3D-2x-8%5Cimplies%20y%20%3D%20%5Ccfrac%7B-2x-8%7D%7B-4%7D%20%5C%5C%5C%5C%5C%5C%20y%20%3D%20%5Ccfrac%7B-2x%7D%7B4%7D-%5Ccfrac%7B8%7D%7B-4%7D%5Cimplies%20y%20%3D%20%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B1%7D%7B2%7D%7Dx%2B2%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so we're really looking for the equation of a line whose slope is 2 and runs through (2,-5),

Order of operation says to divide 2 by 10 first.

Now add the 30 + 5 and get 35

as your final answer