Answer:
8.55 × 
Step-by-step explanation:
Answer: If we define 2:00pm as our 0 in time; then:
at t= 0. the velocity is 30 mi/h.
then at t = 10m (or 1/6 hours) the velocity is 50mi/h
Then, if we think in the "mean acceleration" as the slope between the two velocities, we can find the slope as:
a= (y2 - y1)/(x2 - x1) = (50 mi/h - 30 mi/h)/(1/6h - 0h) = 20*6mi/(h*h) = 120mi/
Now, this is the slope of the mean acceleration between t= 0h and t = 1/6h, then we can use the mean value theorem; who says that if F is a differentiable function on the interval (a,b), then exist at least one point c between a and b where F'(c) = (F(b) - F(a))/(b - a)
So if v is differentiable, then there is a time T between 0h and 1/6h where v(T) = 120mi/
Answer:
Step-by-step explanation:
time taken to reach the max height is expressed according to the projectile equation;
tmax = u/g
Given u = 30m/s
g is the acceleration due to gravity = 9.81
t = 30/9.81
t = 3.0secs
hence it will take the flare 3.06secs to reach its maximum height.
Max height = u²/2g
Max height = 30²/2(9.81)
Max height = 900/19.62
Max height = 45.87m
If the people set off an emergency flare from a height of 2 meters above the water, the total height will be 45.87 + 2 = 47.87m
Answer:
$75
Step-by-step explanation:
15 x 5 = 75
trust me bro :)
Answer:
Graph B
Step-by-step explanation:
y = (x - 3)(x - 3)
The x intercepts are at 3
Since both intercepts are at 3, the vertex is at 3
We know it is an upwards facing parabola since it is quadratic and the constant out front is positive