Find a power series representation for the function. Determine the interval of convergence. (Give your power series representation centered at x???
Answer: choice A) 7017
==========================================================
Work Shown:
The first term is a_1 = 24 and we go up by 7 each time.
The common difference is d = 7
The nth term formula we'll use is
a_n = a_1 + (n-1)*d
a_n = 24 + (n-1)*7
----------
The 1000th term corresponds to n = 1000
Replace every n with 1000
Then use the order of operations (PEMDAS) to simplify
a_n = 24 + (n-1)*7
a_1000 = 24 + (1000-1)*7
a_1000 = 24 + (999)*7
a_1000 = 24 + 6993
a_1000 = 7017
The correct answer is: [B]: " 25 a²⁵ b²⁵ " .
_________________________________________________________
<span>Explanation:
_________________________________________________________
Given the expression:
_________________________________________________________
</span>→ " (−5a⁵b⁵)² (a³b³)⁵ " ; Simplify.
_________________________________________________________
Let us being by examining:
______________________________________
→ "(−5a⁵b⁵)² " .
→ "(−5a⁵b⁵)² = (-5)² * (a⁵)² * (b⁵)² = (-5)(-5) * a⁽⁵ˣ²⁾ * b⁽⁵ˣ²⁾ = 25a⁽¹⁰⁾b⁽¹⁰⁾ ;
{Note the following properties of exponents:
(xy)ⁿ = xⁿ * yⁿ ;
(xᵃ)ᵇ = x⁽ᵃ * ᵇ) ;
(xᵃ) * (xᵇ) = x⁽ᵃ ⁺ ᵇ⁾ .}.
______________________________________
Then, we examine:
______________________________________
→ "(a³b³)⁵ " .
→ "(a³b³)⁵ = a⁽³ˣ⁵⁾b⁽³ˣ⁵⁾ = a⁽¹⁵⁾b⁽¹⁵⁾ .
______________________________________
So: " (−5a⁵b⁵)² (a³b³)⁵ = (-5)a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;
________________________________________
Now, we simplify:
→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;
→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ ;
= 25a⁽¹⁰⁾ a⁽¹⁵⁾b⁽¹⁰⁾ b⁽¹⁵⁾ ;
= 25a⁽¹⁰ ⁺¹⁵⁾ b⁽¹⁰⁺¹⁵⁾ ;
= 25a⁽²⁵⁾ b⁽²⁵⁾ ;
_______________________________________________
→ which is: Answer choice: [B]: " 25 a²⁵ b²⁵ " .
______________________________________________
Answer:
Non-collinear points: These points, like points X, Y, and Z in the above figure, don't all lie on the same line. Coplanar points: A group of points that lie in the same plane are coplanar. Any two or three points are always coplanar. Four or more points might or might not be coplanar.
Step-by-step explanation: