Answer:
yes; 1.25
Step-by-step explanation:
The length to width ratios of the rectangles are ...
A: 12/8 = 1.5
B: 15/10 = 1.5
C: 30/15 = 2.0
__
Rectangles A and B have the same aspect ratio, so are similar. Rectangle B is a scaled copy of A with a scale factor of 10/8 = 1.25.
Answer: B. There are more boys at Mark's school than at Leslie's school because the ratio 41 to 48 is greater than the ratio 11 to 12.
Step-by-step explanation:
Here are the options:
A There are more boys at Mark's school than at Leslie's school because the ratio 11 to 12 is greater than the ratio 41 to 48.
B. There are more boys at Mark's school than at Leslie's school because the ratio 41 to 48 is greater than the ratio 11 to 12.
C. There are more boys at Leslie's school than at Mark's school because the ratio 41 to 48 is greater than the ratio 11 to 12.
At leslie's school the ratio of boys and girls is 11 to 12. This implies that the fraction of boys in the school to total students will be:
= 11/(11 + 12) = 11/23 = 0.4783
At Marks school the ratio of boys to girls is 41 to 48. Thus implies that the fraction of boys in the school to total students will be:
= 41 / (41 + 48) = 41/85= 0.4824
Based on the calculation, we can deduce that there are more boys at Mark's school than at Leslie's school because the ratio 41 to 48 is greater than the ratio 11 to 12.
Answer:
TRUE
Step-by-step explanation:
tanθ = 1/cotθ
cotθ = 0 when θ = ±(1/2)π, ±(3/2)π, … ±[(2n+1)/2]π.
∴ tanθ is undefined when θ = ±[(2n+1)/2]π.
secθ = 1/cosθ
cosθ = 0 when θ = ±(1/2)π, ±(3/2)π, , …, ±[(2n+1)/2]π.
∴ secθ is undefined when θ = ±[(2n+1)/2]π.
The tangent and secant functions are undefined for the same values of θ.
Answer: I think it's the first one.
Step-by-step explanation: