Cº b<span>. </span>Points<span> on the </span>x<span>-axis ( </span>Y. 0)-7<span> (6 </span>2C<span>) are mapped to </span>points<span>. --IN- on the </span>y<span>-axis. ... </span>Describe<span> the transformation: 'Reflect A ALT if A(-5,-1), L(-</span>3,-2), T(-3,2<span>) by the </span>rule<span> (</span>x<span>, </span>y) → (x<span> + </span>3<span>, </span>y<span> + </span>2<span>), then reflect over the </span>y-axis, (x,-1) → (−x,−y<span>). A </span>C-2. L (<span>0.0 tº CD + ... </span>translation<span> of (</span>x,y) → (x–4,y-3)? and moves from (3,-6) to (6,3<span>), by how.</span>
Answer:
We have the next relation:
A = (b*d)/c
because we have direct variation with b and d, but inversely variation with c.
Now, if we have 3d instead of d, we have:
A' = (b*(3d))/c
now, we want A' = A. If b,c, and d are the same in both equations, we have that:
3bd/c = b*d/c
this will only be true if b or/and d are equal to 0.
If d remains unchanged, and we can play with the other two variables we have:
3b'd/c' = bd/c
3b'/c' = b/c
from this we can took that: if c' = c, then b' = b/3, and if b = b', then c' = 3c.
Of course, there are other infinitely large possible combinations that are also a solution for this problem where neither b' = b or c' = c
Answer:
A.
Step-by-step explanation:
Given:
Volume of the cylindrical container before dilation,
Scale factor of the dilation,
Therefore, the volume of the dilated cylinder is given as:
Plug in 1 gal for and for SF. Solve for . This gives,
Therefore, the volume of the dilated cylinder is gallons.