Answer:
Impedance, Z = 107 ohms
Explanation:
It is given that,
Resistance, R = 100 ohms
Inductance, 
Capacitance, 
Frequency, f = 60 Hz
Voltage, V = 120 V
The impedance of the circuit is given by :
...........(1)
Where
is the capacitive reactance, 

is the inductive reactance, 

So, equation (1) becomes :

Z = 106.26 ohms
or
Z = 107 ohms
So, the impedance of the circuit is 107 ohms. Hence, this is the required solution.
For finding the orbital speed of the satellite we can say that the centripetal force for the circular motion of satellite is provided by the gravitational force of earth
so here we can say


now we will have

now here we will say that orbital speed of the satellite is inversely depends on the orbital radius
<em>So here if orbital speed is half then as per above relation we can say that orbital distance will become four times</em>
<em>Also we can say that if orbital speed is double then orbital distance will become one fourth of initial distance.</em>
Answer:
(a) The spring constant is 426N/m
(b) The mass is 5.65kg
Explanation:
(a) Energy stored in the spring (E) = 3.6J, extension (e) = 0.13m
E = 1/2Ke^2
3.6 = 1/2 × K × 0.13^2
K (spring constant) = 3.6×2/0.0169 = 426N/m
(b) F = Ke = 426 × 0.13 = 55.38N
Assuming the maximum acceleration (a) is 9.8m/s^2
Mass (m) = F/a = 55.38/9.8 = 5.65kg
The Bermoulli's equation allows us to find the pressure in the narrow part of the pipe through which water circulates is:
P = 500 Pa
Bernoulli's equation is the work-energy relationship for fluids that are liquids and gases.
Where the subscripts 1 and 2 represent points of interest, P is the pressure, ρ the density of the fluid, v the velocity and y the height.
They indicate that the pipe is horizontal, that the pressure in the wide part P₁ = 200 kPa and the velocity is v₁ = 5 m / s and in the narrow part v₂=8.00 m/s, see attached.
Since the pipe is horizontal y₁ = y₂
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
P₂ = P₁ + ½ ρ (v₁² - v₂²)
Let's calculate
P₂ = 200 10² + ½ ρ (5² - 8²)
P₂ = 2 10⁴ - 19.5 ρ
For a specific calculation the value of the density of the fluid is needed, suppose that the fluid is water ρ = 1000 kg / m³
P₂ = 2 10² - 19.5 1000
P₂ = 500 Pa
In conclusion using the Bermoulli equation we can find the pressure in the narrow part of the pipe through which water circulates is:
P = 500 Pa
Learn more here: brainly.com/question/9506577