1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
6

Explain the versatility of epithelial tissue

Physics
2 answers:
Dafna11 [192]3 years ago
8 0
Epithelial cells are classified by the following three factors : 1. Shape . 2. Stratification. 3.Specialization . It's a main aspect to the mehe family , and plays a huge part in helping the movement of bobbing your head.
mrs_skeptik [129]3 years ago
6 0

Answer:

Explanation:

The epithelial tissues cover the body surfaces, forms a lining over the body cavities and hollow organs. These tissues also forms a protective barrier between the external environment and the body.

The epithelial tissues are the tissues which performs various functions. These tissues are composed of cells that are laid close to each other with the cells that lies in the close association with each other. The structure and function of the epithelial cells vary from both upper and lower surfaces. Due to variety in the functions of the epithelial tissues like protection, secretion, cellular transportation, filtration, selective absorption and sensing, these are called as the versatile tissues.

You might be interested in
Please answer any of these thanks !
KIM [24]
1).  The equation is: (speed) = (frequency) x (wavelength)

Speed = (256 Hz) x (1.3 m) = 332.8 meters per second

 2).  If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.

If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.

If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.

3).  The equation is:  Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)

Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.

That's ' 200 k Hz ' .

Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised.  They broadcast on several different frequencies,
and one of them is 198 kHz !
7 0
3 years ago
EASY MATCHING PLEASE HELP!
kakasveta [241]
<h2><u>Answers:</u></h2><h2>1.) Right answer: polarization  </h2>

Alignment of light in only one vibrational orientation: polarization  

Normally, electromagnetic waves (light) are not polarized, so electromagnetic vibration occurs in all planes. But when we get these waves to vibrate in a single plane, we have polarized light.

This is possible because electromagnetic waves are transversal waves, this means the electric field oscillates in all normal directions to the direction of wave propagation.

In other words:

<em>Its oscillation occurs in the transversal direction to its propagation. </em>

So, when polarization occurs the electric field vibrates or oscillates in a given plane, called the <u>polarization plane</u>.

It should be noted that this phenomenon is only possible in transversal waves, in longitudinal waves, such as sound waves, polarization is not possible because its oscillation occurs in the same direction as its propagation.

<h2>2.) Right answer: concave  </h2>

Mirror that causes parallel incident rays of light to converge at the focus: concave  

A concave mirror, or convergent mirror, has a reflective surface that is curved inwards.

The concave mirrors reflect the light making it converge in a focal point therefore they are used to focus the light. This occurs because the light is reflected with different angles, since the normal to the surface varies from one point to another of the mirror.

<h2>3.) Right answer: photoelectric effect </h2>

phenomenon that can be explained only by a particle model for light: photoelectric effect  

Light can be considered as a wave or as particles (photons), in this context the photoelectric effect can only be explained based on the corpuscular model (particles) of light.

Then, the photoelectric effect consists of the emission of electrons (electric current) that occurs when light falls on a metal surface under certain conditions.

If the light is a stream of photons and each of them has energy, this energy is be able to pull an electron out of the crystalline lattice of the metal and communicate, in addition, a kinetic energy.

 

<h2>4.) Right answer: Taylor's experiment   </h2>

experiment that showed that diffraction effects could be attributed to light particles: Taylor's experiment  

This experiment was carried out by Geoffrey Taylor in 1909 with a flame as a light source, a diffraction grating and a photographic plate.

All this to test the diffraction of light.


<h2> 5.) Right answer: reflection  </h2>

principal use of mirrors: reflection

Mirrors fulfill the principle of reflection, which occurs when the light rays fall on a very flat reflecting surface are reflected so that the incident angle is equal to the reflected angle

<h2>6.) Right answer: mirage  </h2>

image of the sky seen on a hot road: mirage

A mirage is the product of an optical illusion due to the total reflection of the light when crossing layers of hot air of different density; this causes the perception of the inverted image of distant objects, as if they were reflected in the water.

<h2>7.) Right answer: virtual  </h2>

type of images always produced by convex  mirrors: virtual

In the convex mirrors the focus is virtual and the focal distance is negative. This is how the reflected rays diverge and only their extensions are cut at a point on the main axis, resulting in a virtual image of the real object.

<h2>8.) Right answer: diffraction  </h2>

pattern produced by light through a narrow slit: diffraction

Diffraction is a phenomenon that is based on the deviation of the waves (light waves in this case) when encountering an obstacle or going through a slit

<h2>9.) Right answer: convex  </h2>

shape of a converging lens: convex  

A convex lens is thicker in the center than at its edges and concentrates (converges) at a point the rays of light that pass through it.

<h2>10.) Right answer: dispersion  </h2>

separating light into component colors: dispersion  

The dispersion of light occurs when a beam of composite light is refracted (the different rays of light are diverted depending on their frequencies) in some medium, leaving their constituent colors separated.

The best known case is when a beam of white light from the sun passes through a prism, thus obtaining rays of different colors like those of the rainbow.


8 0
3 years ago
Read 2 more answers
At a location near the equator, the earth’s magnetic field is horizontal and points north. An electron is moving vertically upwa
ivann1987 [24]

Answer:

(b) EAST

Explanation:

you can assume that the magnetic field points rightward, that is, in the positive x direction (NORTH). Furthermore, you can assume that the direction of the motion of the electron is in the positive y direction. Hence, you have:

\vec{B}=B_o\hat{i}\\\\\vec{v}=v_o\hat{j}

You use the Lorentz formula to known which is the direction of the magnetic force over the electron:

F=qv\ X\ B

which implies the cross product between the unitary vecors j and i, that is

\hat{i} \ X\ \hat{j} = -\hat{k}  (WEST)

However, the minus sign of the charge of the electron changes the direction 180°. Hence, the direction is k. That is, to the EAST

3 0
3 years ago
Read 2 more answers
A type of star called a red dwarf gets its name because it is a relatively small star that appears redder than the Sun when view
weeeeeb [17]

Answer:

option (b) reflect

make me brainliest

5 0
3 years ago
Two 1.0 cm * 2.0 cm rectangular electrodes are 1.0 mm apart. What charge must be placed on each electrode to create a uniform el
kvv77 [185]

Answer:

The number of electrons that must be moved from one electrode to the other to accomplish this is 1.4 X 10⁹ electrons.

Explanation:

<u>Step 1:</u> calculate the charge on each electrode

Given;

Electric field strength = 2.0 X 10⁶ N/C

The distance between the electrode = 1mm = 1 X 10⁻³ m

Electric field strength (E) = Force (F)/Charge (q)

E =\frac{Kq}{r^2}

where;

E is the electric field strength = 2.0 X 10⁶ N/C

K is coulomb's constant = 8.99 X 10⁹ Nm²/C²

r is the distance between the electrodes = 1 X 10⁻³ m

q is the charge in each electrode = ?

q = \frac{Er^2}{K} = \frac{(2X10^6)(1X10^{-3})^2}{8.99 X10 ^9} = 0.2225 X 10⁻⁹ C

The charge on each electrode is 0.2225 X 10⁻⁹ C

<u>Step 2:</u> calculate the number of electrons to be moved from one electrode to the other.

1 electron contains 1.602 X 10⁻¹⁹ C

So, 0.2225 X 10⁻⁹ C will contain how many electrons ?

= (0.2225 X 10⁻⁹)/(1.602 X 10⁻¹⁹)

= 1.4 X 10⁹ electrons

Therefore, the number of electrons that must be moved from one electrode to the other to accomplish this is 1.4 X 10⁹ electrons.

8 0
3 years ago
Other questions:
  • HHHHHEEEELLLPP
    13·2 answers
  • The combined electrical resistance R of two resistors R_1 and R_2, connected in parallel, is given by 1/R = 1/R_1 + 1/R_2 where
    9·1 answer
  • Ampres law is often written contourintegral B vector (r vector) middot dl vector = mu_0I_enclosed. The integral on the left is
    15·1 answer
  • When the only force affecting an object is gravity,that object is in _______________
    15·1 answer
  • A speaker generates a continuous tone of 440 Hz. In the drawing, sound travels into a tube that splits into two segments, one lo
    10·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    9·1 answer
  • Which statement is true about magnetic poles?
    7·2 answers
  • If a body is accelerating m change the velocity of 2 metre per second square when it was acted by five hundred Newton of force t
    11·2 answers
  • A car traveling at 90 m/s can stop in a distance of 110 m. What is the magnitude of the cars acceleration as it slows down?
    7·1 answer
  • I need to catch up on late work
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!