1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
3 years ago
13

A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their v

elocity just after the collision?
(b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity?
(c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping?
Physics
1 answer:
nevsk [136]3 years ago
5 0

Answer:

a) 16.86 m/s.

b) 15.40 m/s

c) 3.175 m/s  

Explanation:

let pi be the initial momentum of the system, pf be the final momentum of the system, m1 be the mass of the bullet and V1 be the intial velocity of the bullet, m2 be the mass of the block and V2 be the intial velocity of the block

a)  from the conservation of linear momentum:

                                          pi = pf

              m1×(V1)i + m2×(V2)i = Vf×(m1 + m2)

(0.0220)×(400) + (0.500)×(0) = Vf(0.0220 + 0.500)

                                         8.8 = 0.522×Vf

                                          Vf = 16.86 m/s

Therefore, the bullet-embedded block system will be moving with a speed of 16.86 m/s.

b)  let Vf be the final velocity of the bullet-embedded block system, Wf be the work done by friction on the system, Vi be the initial velocity that the bullet-embedded block system initially moves with.

the total work done on the system is given by:

                                Wtot = Δk = kf - ki

                                    Wf = 1/2×m×(Vi)^2 - 1/2×m×(Vf)^2

                    f×ΔxΔcos(Ф) = 1/2×m×(Vi)^2 - 1/2×m×(Vf)^2

                 m×Δx×g×μ×(-1) =  1/2×m×(Vi)^2 - 1/2×m×(Vf)^2

                        m×g×Δx×μ =  1/2(Vi)^2 - 1/2(Vf)^2

1/2(0.0220 + 0.500)(Vf)^2 = 1/2(0.0220 + 0.500)(16.86)^2 - (0.0220 +           0.500)×(9.8)×(8)×(0.30)

                     (0.261)(Vf)^2 = 86.469

                                (Vf)^2 = 237.2196

                                       Vf = 15.40 m/s

Therefore,   bullet-embedded block system will have a speed of 15.40 m/s after sliding of the friction surface.

c) let Vf be the speed of the bullet-embedded before hitting the block, Vi be the initial velocity of the block and V be the velocity of the bullet-embedded block and block system.

                              M×Vf + m×Vi = (m + M)×V  

 (0.0200 + 0.50)×(15.40) + (2)×(0) = (0.022 + 0.50 + 2)×V

                                             8.008 = 2.522×V

                                                    V = 3.175 m/s  

  Therefore, the bullet-embedded block and block system will be moving at a speed of 3.175 m/s.

You might be interested in
9. Una jeringa contiene cloro gaseoso, que ocupa un volumen de 95 mL a una presión de 0,96 atm. ¿Qué presión debemos ejercer en
masha68 [24]

Answer:

2.61 atm

Ley de Boyle

Explanation:

P_1 = Presión inicial = 0.96 atm

P_2 = Presión final

V_1 = Volumen inicial = 95 mL

V_2 = Volumen final = 35 mL

En este problema usaremos la ley de Boyle.

\dfrac{P_1}{P_2}=\dfrac{V_2}{V_1}\\\Rightarrow P_2=\dfrac{P_1V_1}{V_2}\\\Rightarrow P_2=\dfrac{0.96\times 95}{35}\\\Rightarrow P_1=2.61\ \text{atm}

La presión ejercida sobre el émbolo para reducir su volumen es de 2.61 atm.

4 0
2 years ago
Long Jump: inital center of mass height of 1.08 m, final center of mass height of 0.42 m, projection velocity of 8.7 m/s, projec
sammy [17]

Answer:

1) The maximum jump height is reached at A. 0.337s

2) The maximum center of mass height off of the ground is B. 1.64m

3) The time of flight is C. 0.834s

4) The distance of jump is B. 7.49m

Explanation:

First of all we need to decompose velocity in its rectangular components, so

v_{xi}=8.7m/s(cos 22.3\°)=8.05m/s= constant\\v_{yi}=8.7m/s(sin 22.3\°)=3.3m/s

1) We use, v_{fy}=v_{iy}-gt, as we clear it for t and using the fact that v_{fy}=0 at max height, we obtain t=\frac{v_{iy}}{g} =\frac{3.3m/s}{9,8m/s^{2}} =0.337s

2) We can use the formula y_{max}=y_{i}+v_{iy}t-\frac{gt^{2}}{2} for t=0.337s, so

y_{max}=1.08m+(3.3m/s)(0.337s)-\frac{(9.8m/s^{2})(0.337)^{2}}{2}=1.64m

3) We can use the formula y_{f}=y_{i}+v_{iy}t-\frac{gt^{2}}{2}, to find total time of fligth, so 0.42=1.08+3.3t-\frac{(9.8)t^{2}}{2}\\0=-4.9t^{2}+3.3t+0.66, as it is a second-grade polynomial, we find that its positive root is t=0.834s

4) Finally, we use x=v_{x}t=8.05m/s(0.834s)=6.71m, as it has an additional displacement of 0.77m due the leg extension we obtain,

x=6.71m+0.77m=7.48m, aprox x=7.49m

5 0
4 years ago
An electric motor is connected to a battery. The current flows through brushes to a commutator ring, which is attached to a elec
Rzqust [24]

Answer:

Commutator is a ring which reverse the direction of current in AC circuit so that the coil connected to it will continuous to move in the same direction.

Explanation:

In motors there exist a coil which is rotated due to torque of magnetic field when current flow through it. Since AC current is used to run the motor so we know that AC current changes its direction after half cycle.

So here commutator plays an important role to reverse the direction of current after every half cycle so that the current goes in same direction always into the coil.

This will produce a constant direction torque on the coil so that it will rotate in same sense always.

So commutator role is to provide same direction current to the coil by reversing its direction after every half cycle

8 0
3 years ago
What is measurement?​
Semmy [17]

Answer:

How long or wide something is

Explanation:

5 0
3 years ago
Complete the sentence to describe what a wave is and what it does.
sweet-ann [11.9K]

Answer:

A wave is a vibration in mediun tbat carries energy from one place to another.

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A ladybug sits 14 cm from the center of a turntable spinning at 33.33 rpm. The Sun is shining horizontally through the window an
    10·1 answer
  • Which of the following is an example of newton second law of motion?
    5·1 answer
  • An object has a position given by r = [2.0 m + (5.00 m/s)t] i^ + [3.0m−(2.00 m/s2)t2] j^, where all quantities are in SI units.
    6·1 answer
  • What is the taste of the resulting mixture?
    15·2 answers
  • A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
    15·1 answer
  • In which situation is the acceleration of the car negative?
    14·2 answers
  • When solving projectiles you will often get two possible times for solutions. Sometimes a time will be negative and can be rejec
    5·1 answer
  • Which combination of alleles would produce a recessive trait? <br><br> TT<br> tt<br> or Tt
    7·1 answer
  • Help me, please with this queastion
    15·1 answer
  • The distance between adjacent nodes in a standing wave pattern is 25.0 cm. What is the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!