1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
13

Can someone please help me out with this question? I need an answer ASAP. Thank you!!!

Mathematics
2 answers:
LekaFEV [45]3 years ago
5 0
<h2>Answer:</h2>

The resultant of the dot product of two vectors is:

                     v\cdot w=22

<h2>Step-by-step explanation:</h2>

We are asked to find the dot product of the two vectors v and w.

The vectors are given by:

r = <8, 8, -6>; v = <3, -8, -3>; w = <-4, -2, -6>

This means that  in the vector form they could be written as follows:

r=8\hat i+8\hat j -6\hat k\\\\v=3\hat i-8\hat j -3\hat k\\\\w=-4\hat i-2\hat j -6\hat k

Hence, the dot product of two vectors is the sum of the product of the entries corresponding to each direction component.

i.e. the x-component get multiplied to each other, y-component get multiplied to each other and so happens with z.

Hence, the dot product of v and w is calculated as:

v\cdot w=3\times (-4)-8\times (-2)-3\times (-6)\\\\i.e.\\\\v\cdot w=-12+16+18\\\\i.e.\\\\v\cdot w=22

FinnZ [79.3K]3 years ago
4 0

Multiply corresponding components, then add the products:

v\cdot w=3(-4)+(-8)(-2)+(-3)(-6)=22

You might be interested in
There are 24 pictures on a roll of film. Adelle had 84 pictures from her trip home. She said that 12 other pictures were spoiled
Anna71 [15]

Answer:

Total pictures = 84+12 = 96

roll of films = 96 / 24 = 4

she used 4 rolls

7 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is the product of 1/2 x -1/4 and 5x^2 - 2x + 6? Write in standard form.
geniusboy [140]

Answer:     the product of the first one is (x-2)/(2)

Step-by-step explanation:

7 0
3 years ago
How do you write 35 over 20 As a percentage
lara31 [8.8K]
In order to write \frac{35}{20} as a percentage, we must first convert the fraction into a decimal. We can do that simply by dividing.

35 / 20 = 1.75

In order to convert a fraction to a decimal, we must multiply it by 100

1.75 * 100 = 175%

\frac{35}{20} as a percentage is 175%.
Hope that helped =)
4 0
3 years ago
Read 2 more answers
System of equations by substitution<br> how do this?<br> y= x+2<br> y= -4x+7
jekas [21]
Equations are given,
y= x+2
<span>
y= -4x+7

As you can see both the expressions, x+2 and -4x+7 are equal to "y". That means they are equal to each other too.

So let's equal them and solve it.

</span>x+2=-4x+7\\ \\ x+2+4x=7\\ \\ x+4x+2=7\\ \\ 5x+2=7\\ \\ 5x=7-2\\ \\ 5x=5\\ \\ x=\frac { 5 }{ 5 } \\ \\ x=1
<span>
Now we have x's value we will plug it in the first equation to find "y".

</span>x=1\\ \\ y=x+2\\ \\ y=1+2\\ \\ y=3
<span>
(1,3)</span>
8 0
3 years ago
Other questions:
  • Jen’s goal is to run a total of 22 miles in five days. The table below shows her log for the number of miles she ran on Monday,
    11·2 answers
  • Solve for x. <br><br> 89(54x−36)+2=−34(−40+16x)+90x
    9·1 answer
  • Can someone help me order these from least to greatest
    12·1 answer
  • Which polygon appears to be regular?
    8·2 answers
  • Gary found 72 shells and 40 queens at the beach he wants to give them to some of his friends each friend receive the same number
    10·1 answer
  • Write the radical equation that has a flip/reflection over the x-axis and a vertical shift down 1.
    10·1 answer
  • WILL MARK BRAINLIEST
    8·1 answer
  • Determine the solution to f(x) = g(x) using the following system of equations: f(x) = 3x + 12 g(x) = -9.5x - 13
    9·2 answers
  • Пру<br> 4(х + 2) - (2x – 5)<br> 4(х + 2) – (2x – 5) =
    8·1 answer
  • Can I have help with the problem in the picture pls​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!