Answer:
105
the whole triangle adds up to 180
72+3=75
180-75=105
Answer:
A. 7,348
Step-by-step explanation:
P = le^kt
intitial population = 500
time = 4 hrs
end population = 3,000
So we have all these variables and we need to solve for what the end population will be if we change the time to 6 hours. First, we need to find the rate of the growth(k) so we can plug it back in. The given formula shows a exponencial growth formula. (A = Pe^rt) A is end amount, P is start amount, e is a constant that you can probably find on your graphing calculator, r is the rate, and t is time.
A = Pe^rt
3,000 = 500e^r4
now we can solve for r
divide both sides by 500
6 = e^r4
now because the variable is in the exponent, we have to use a log

ln(6) = 4r
we can plug the log into a calculator to get
1.79 = 4r
divide both sides by 4
r = .448
now lets plug it back in
A = 500e^(.448)(6 hrs)
A = 7351.12
This is closest to answer A. 7,348
Answer:
Yes, an arrow can be drawn from 10.3 so the relation is a function.
Step-by-step explanation:
Assuming the diagram on the left is the domain(the inputs) and the diagram on the right is the range(the outputs), yes, an arrow can be drawn from 10.3 and the relation will be a function.
The only time something isn't a function is if two different outputs had the same input. However, it's okay for two different inputs to have the same output.
In this problem, 10.3 is an input. If you drew an arrow from 10.3 to one of the values on the right, 10.3 would end up sharing an output with another input. This is allowed, and the relation would be classified as a function.
However, if you drew multiple arrows from 10.3 to different values on the right, then the relation would no longer be a function because 10.3, a single input, would have multiple outputs.
Answer:
multiply and see what you get
Answer:
P in terms of V is:
P = 432/V
Step-by-step explanation:
We know that y varies inversely as x, we get the equation
y ∝ 1/x
y = k/x
k = yx
where k is called the constant of proportionality.
In our case,
P is inversely proportional to V
Given
P = 18
V = 24
so
P = k/V
k = PV
substituting P = 18 and V = 24 to determine k
k = 18 × 24
k = 432
now substituting k = 432 in P = k/V
P = 432/V
Therefore, P in terms of V is:
P = 432/V