The largest possible volume of the given box is; 96.28 ft³
<h3>How to maximize volume of a box?</h3>
Let b be the length and the width of the base (length and width are the same since the base is square).
Let h be the height of the box.
The surface area of the box is;
S = b² + 4bh
We are given S = 100 ft². Thus;
b² + 4bh = 100
h = (100 - b²)/4b
Volume of the box in terms of b will be;
V(b) = b²h = b² * (100 - b²)/4b
V(b) = 25b - b³/4
The volume is maximum when dV/db = 0. Thus;
dV/db = 25 - 3b²/4
25 - 3b²/4 = 0
√(100/3) = b
b = 5.77 ft
Thus;
h = (100 - (√(100/3)²)/4(5.77)
h = 2.8885 ft
Thus;
Largest volume = [√(100/3)]² * 2.8885
Largest Volume = 96.28 ft³
Read more about Maximizing Volume at; brainly.com/question/1869299
#SPJ1
All real numbers is the correct answer
Answer: <em>ANSWER: 30,000</em>
Step-by-step explanation:
<em>Okay so rounding to the ten thousand will mean you are looking at the 3 and looking behind it, the 4 is behind the 3 in 34,699 and 0-4 we round down so the nearest 10,000 is 30,000.</em>
Answer:
We have the equation
![c_1\left[\begin{array}{c}0\\0\\0\\1\end{array}\right] +c_2\left[\begin{array}{c}0\\0\\3\\1\end{array}\right] +c_3\left[\begin{array}{c}0\\4\\3\\1\end{array}\right] +c_4\left[\begin{array}{c}8\\4\\3\\1\end{array}\right] =\left[\begin{array}{c}0\\0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=c_1%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_2%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%2Bc_4%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C4%5C%5C3%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Then, the augmented matrix of the system is
![\left[\begin{array}{cccc}0&0&0&8\\0&0&4&4\\0&3&3&3\\1&1&1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%260%260%268%5C%5C0%260%264%264%5C%5C0%263%263%263%5C%5C1%261%261%261%5Cend%7Barray%7D%5Cright%5D)
We exchange rows 1 and 4 and rows 2 and 3 and obtain the matrix:
![\left[\begin{array}{cccc}1&1&1&1\\0&3&3&3\\0&0&4&4\\0&0&0&8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%261%261%261%5C%5C0%263%263%263%5C%5C0%260%264%264%5C%5C0%260%260%268%5Cend%7Barray%7D%5Cright%5D)
This matrix is in echelon form. Then, now we apply backward substitution:
1.

2.

3.

4.

Then the system has unique solution that is
and this imply that the vectors
are linear independent.