Rewrite the root expressions as fractional exponents:
![\dfrac{\sqrt[3]{7}}{\sqrt[5]{7}} = \dfrac{7^{1/3}}{7^{1/5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B7%7D%7D%7B%5Csqrt%5B5%5D%7B7%7D%7D%20%3D%20%5Cdfrac%7B7%5E%7B1%2F3%7D%7D%7B7%5E%7B1%2F5%7D%7D)
Recall that
, so that

Simplify the exponent:

Then you end up with
![\dfrac{\sqrt[3]{7}}{\sqrt[5]{7}} = 7^{2/15}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B7%7D%7D%7B%5Csqrt%5B5%5D%7B7%7D%7D%20%3D%207%5E%7B2%2F15%7D)
There are only 3 patterns that exceed the sum of 10 which are: 5-6,6-5,6-6.
Which gives us 33 patterns. Which makes 33 sums not greater than 10.
Answer:

Step-by-step explanation:

Answer:
Step-by-step explanation:
a = b
Pythagorean Theorem:
b = 10/√2